有效地强制广义拟随机图

Andrzej Grzesik, Daniel Král’, Oleg Pikhurko
{"title":"有效地强制广义拟随机图","authors":"Andrzej Grzesik, Daniel Král’, Oleg Pikhurko","doi":"10.1017/s0963548323000263","DOIUrl":null,"url":null,"abstract":"\n We study generalised quasirandom graphs whose vertex set consists of \n \n \n \n$q$\n\n \n parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most \n \n \n \n$(10q)^q+q$\n\n \n vertices; subsequently, Lovász refined the argument to show that graphs with \n \n \n \n$4(2q+3)^8$\n\n \n vertices suffice. Our results imply that the structure of generalised quasirandom graphs with \n \n \n \n$q\\ge 2$\n\n \n parts is forced by homomorphism densities of graphs with at most \n \n \n \n$4q^2-q$\n\n \n vertices, and, if vertices in distinct parts have distinct degrees, then \n \n \n \n$2q+1$\n\n \n vertices suffice. The latter improves the bound of \n \n \n \n$8q-4$\n\n \n due to Spencer.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forcing generalised quasirandom graphs efficiently\",\"authors\":\"Andrzej Grzesik, Daniel Král’, Oleg Pikhurko\",\"doi\":\"10.1017/s0963548323000263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study generalised quasirandom graphs whose vertex set consists of \\n \\n \\n \\n$q$\\n\\n \\n parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most \\n \\n \\n \\n$(10q)^q+q$\\n\\n \\n vertices; subsequently, Lovász refined the argument to show that graphs with \\n \\n \\n \\n$4(2q+3)^8$\\n\\n \\n vertices suffice. Our results imply that the structure of generalised quasirandom graphs with \\n \\n \\n \\n$q\\\\ge 2$\\n\\n \\n parts is forced by homomorphism densities of graphs with at most \\n \\n \\n \\n$4q^2-q$\\n\\n \\n vertices, and, if vertices in distinct parts have distinct degrees, then \\n \\n \\n \\n$2q+1$\\n\\n \\n vertices suffice. The latter improves the bound of \\n \\n \\n \\n$8q-4$\\n\\n \\n due to Spencer.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548323000263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类广义拟随机图,其顶点集由$q$个部分组成(这些部分的大小不一定相同),每个部分内部和每对部分之间的边是拟随机分布的;这些图对应于统计学和网络科学中研究的随机块模型。Lovász和Sós表明这种图的结构是由最多$(10q)^q+q$顶点的图的同态密度所强制的;随后,Lovász改进了这个论点,以表明具有$4(2q+3)^8$顶点的图就足够了。我们的结果表明,具有$q\ 2$部分的广义拟随机图的结构是由最多$4q^2-q$顶点的图的同态密度所强制的,并且,如果不同部分的顶点具有不同的度,则$2q+1$顶点就足够了。后者改善了$8q-4$的边界,这是由于Spencer的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forcing generalised quasirandom graphs efficiently
We study generalised quasirandom graphs whose vertex set consists of $q$ parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10q)^q+q$ vertices; subsequently, Lovász refined the argument to show that graphs with $4(2q+3)^8$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $q\ge 2$ parts is forced by homomorphism densities of graphs with at most $4q^2-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2q+1$ vertices suffice. The latter improves the bound of $8q-4$ due to Spencer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信