铁缺乏对甘尼姆和GF 677嫁接桃李叶绿素合成、叶细胞扩增、木质部发育和生理的影响

IF 0.8 4区 农林科学 Q3 AGRICULTURE, MULTIDISCIPLINARY
Servet Aras, H. Keles, Erhan Bozkurt
{"title":"铁缺乏对甘尼姆和GF 677嫁接桃李叶绿素合成、叶细胞扩增、木质部发育和生理的影响","authors":"Servet Aras, H. Keles, Erhan Bozkurt","doi":"10.13080/z-a.2022.109.008","DOIUrl":null,"url":null,"abstract":"Rootstocks tolerant to iron (Fe) deficiency can be used to cope with Fe chlorosis damage. In the experiment, two peach (Prunus persica (L.) Batsch) rootstocks Garnem and GF 677 grown under Fe deficiency conditions were compared. Plants were subjected to Fe deficiency for three months, and some leaf physiological and histological responses were assessed. The relative growth rate of scion diameter and the root to shoot dry weight ratio decreased in both rootstocks. Leaf malondialdehyde content increased in rootstocks Garnem and GF 677 by 22% and 15%, respectively. In leaves, total phenolic content decreased in both rootstocks. Leaf chlorophyll and chlorophyll precursor concentrations decreased under Fe deficiency. Midrib and xylem thickness, xylem conduit width and number of xylem conduits decreased because of Fe deficiency, and the decreases in the parameters were found higher in rootstocks Garnem. Iron triggered leaf cell division, but cell expansion could not occur due to the lack of Fe. The results of the experiment demonstrated that Fe is a prerequisite for chlorophyll biosynthesis and leaf cell expansion, and GF 677 is a more tolerant rootstock to Fe deficiency compared to Garnem and can be used in peach orchards subjected to Fe deficiency conditions.","PeriodicalId":23946,"journal":{"name":"Zemdirbyste-agriculture","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Iron deficiency impacts chlorophyll biosynthesis, leaf cell expansion, xylem development and physiology of Prunus persica grafted onto rootstocks Garnem and GF 677\",\"authors\":\"Servet Aras, H. Keles, Erhan Bozkurt\",\"doi\":\"10.13080/z-a.2022.109.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rootstocks tolerant to iron (Fe) deficiency can be used to cope with Fe chlorosis damage. In the experiment, two peach (Prunus persica (L.) Batsch) rootstocks Garnem and GF 677 grown under Fe deficiency conditions were compared. Plants were subjected to Fe deficiency for three months, and some leaf physiological and histological responses were assessed. The relative growth rate of scion diameter and the root to shoot dry weight ratio decreased in both rootstocks. Leaf malondialdehyde content increased in rootstocks Garnem and GF 677 by 22% and 15%, respectively. In leaves, total phenolic content decreased in both rootstocks. Leaf chlorophyll and chlorophyll precursor concentrations decreased under Fe deficiency. Midrib and xylem thickness, xylem conduit width and number of xylem conduits decreased because of Fe deficiency, and the decreases in the parameters were found higher in rootstocks Garnem. Iron triggered leaf cell division, but cell expansion could not occur due to the lack of Fe. The results of the experiment demonstrated that Fe is a prerequisite for chlorophyll biosynthesis and leaf cell expansion, and GF 677 is a more tolerant rootstock to Fe deficiency compared to Garnem and can be used in peach orchards subjected to Fe deficiency conditions.\",\"PeriodicalId\":23946,\"journal\":{\"name\":\"Zemdirbyste-agriculture\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zemdirbyste-agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13080/z-a.2022.109.008\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zemdirbyste-agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13080/z-a.2022.109.008","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

耐缺铁的砧木可以用来对付铁黄化损害。在试验中,两只桃(Prunus persica, L.)比较了在缺铁条件下生长的Batsch砧木Garnem和GF 677。对缺铁植株进行3个月的缺铁处理,观察叶片的一些生理和组织学反应。两种砧木接穗直径的相对生长率和根冠干重比均下降。根茎加纳姆和GF 677叶片丙二醛含量分别提高22%和15%。在叶片中,两根砧木的总酚含量均下降。缺铁条件下叶片叶绿素和叶绿素前体浓度降低。缺铁导致木质部中脉和木质部厚度、木质部导管宽度和木质部导管数量减少,其中以甘木减少幅度较大。铁可以促进叶片细胞分裂,但由于缺铁,细胞不能扩增。试验结果表明,铁是叶绿素生物合成和叶片细胞扩增的先决条件,GF 677比Garnem更耐缺铁,可以在缺铁条件下的桃园中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron deficiency impacts chlorophyll biosynthesis, leaf cell expansion, xylem development and physiology of Prunus persica grafted onto rootstocks Garnem and GF 677
Rootstocks tolerant to iron (Fe) deficiency can be used to cope with Fe chlorosis damage. In the experiment, two peach (Prunus persica (L.) Batsch) rootstocks Garnem and GF 677 grown under Fe deficiency conditions were compared. Plants were subjected to Fe deficiency for three months, and some leaf physiological and histological responses were assessed. The relative growth rate of scion diameter and the root to shoot dry weight ratio decreased in both rootstocks. Leaf malondialdehyde content increased in rootstocks Garnem and GF 677 by 22% and 15%, respectively. In leaves, total phenolic content decreased in both rootstocks. Leaf chlorophyll and chlorophyll precursor concentrations decreased under Fe deficiency. Midrib and xylem thickness, xylem conduit width and number of xylem conduits decreased because of Fe deficiency, and the decreases in the parameters were found higher in rootstocks Garnem. Iron triggered leaf cell division, but cell expansion could not occur due to the lack of Fe. The results of the experiment demonstrated that Fe is a prerequisite for chlorophyll biosynthesis and leaf cell expansion, and GF 677 is a more tolerant rootstock to Fe deficiency compared to Garnem and can be used in peach orchards subjected to Fe deficiency conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zemdirbyste-agriculture
Zemdirbyste-agriculture AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.80
自引率
11.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Zemdirbyste-Agriculture is a quarterly scientific journal which covers a wide range of topics in the field of agricultural sciences, agronomy. It publishes articles of original research findings in the English language in the field of agronomy (soil and crop management, crop production, plant protection, plant breeding and genetics, biotechnology, plant nutrition, agrochemistry, soil science, microbiology etc.) and related areas. Articles are peer-reviewed. Review, debating papers as well as those of a methodological nature will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信