{"title":"人工智能驱动的电子健康记录评估的实际实施与挑战:受保护的健康信息","authors":"Adam P. Tashman PhD","doi":"10.1053/j.ackd.2022.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting protected health information<span> in electronic health record<span> systems is often an early step in health care analytics, and it is a nontrivial problem. Specific challenges include finding clinician names and diseases, which lack a fixed format and are often context-dependent. The general problem of finding entities, termed named-entity recognition, has received a substantial amount of attention in the natural language processing and deep learning communities. This paper begins by outlining recent methods for finding protected health information, and it then introduces a hybrid system which combines regular expressions with a natural language processing framework called FLAIR. FLAIR is open-source, it includes state-of-the-art deep learning models, and it supports straightforward development of new models for language tasks including named-entity recognition. Finally, there is a discussion of how to apply the system to structured text in a database table as well as unstructured text in clinical notes.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Implementation and Challenges of Artificial Intelligence-Driven Electronic Health Record Evaluation: Protected Health Information\",\"authors\":\"Adam P. Tashman PhD\",\"doi\":\"10.1053/j.ackd.2022.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Detecting protected health information<span> in electronic health record<span> systems is often an early step in health care analytics, and it is a nontrivial problem. Specific challenges include finding clinician names and diseases, which lack a fixed format and are often context-dependent. The general problem of finding entities, termed named-entity recognition, has received a substantial amount of attention in the natural language processing and deep learning communities. This paper begins by outlining recent methods for finding protected health information, and it then introduces a hybrid system which combines regular expressions with a natural language processing framework called FLAIR. FLAIR is open-source, it includes state-of-the-art deep learning models, and it supports straightforward development of new models for language tasks including named-entity recognition. Finally, there is a discussion of how to apply the system to structured text in a database table as well as unstructured text in clinical notes.</span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1548559522000982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1548559522000982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Practical Implementation and Challenges of Artificial Intelligence-Driven Electronic Health Record Evaluation: Protected Health Information
Detecting protected health information in electronic health record systems is often an early step in health care analytics, and it is a nontrivial problem. Specific challenges include finding clinician names and diseases, which lack a fixed format and are often context-dependent. The general problem of finding entities, termed named-entity recognition, has received a substantial amount of attention in the natural language processing and deep learning communities. This paper begins by outlining recent methods for finding protected health information, and it then introduces a hybrid system which combines regular expressions with a natural language processing framework called FLAIR. FLAIR is open-source, it includes state-of-the-art deep learning models, and it supports straightforward development of new models for language tasks including named-entity recognition. Finally, there is a discussion of how to apply the system to structured text in a database table as well as unstructured text in clinical notes.