人脸反光照的标签去噪对抗网络(LDAN)

Hao Zhou, J. Sun, Y. Yacoob, D. Jacobs
{"title":"人脸反光照的标签去噪对抗网络(LDAN)","authors":"Hao Zhou, J. Sun, Y. Yacoob, D. Jacobs","doi":"10.1109/CVPR.2018.00653","DOIUrl":null,"url":null,"abstract":"Lighting estimation from faces is an important task and has applications in many areas such as image editing, intrinsic image decomposition, and image forgery detection. We propose to train a deep Convolutional Neural Network (CNN) to regress lighting parameters from a single face image. Lacking massive ground truth lighting labels for face images in the wild, we use an existing method to estimate lighting parameters, which are treated as ground truth with noise. To alleviate the effect of such noise, we utilize the idea of Generative Adversarial Networks (GAN) and propose a Label Denoising Adversarial Network (LDAN). LDAN makes use of synthetic data with accurate ground truth to help train a deep CNN for lighting regression on real face images. Experiments show that our network outperforms existing methods in producing consistent lighting parameters of different faces under similar lighting conditions. To further evaluate the proposed method, we also apply it to regress object 2D key points where ground truth labels are available. Our experiments demonstrate its effectiveness on this application.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"23 1","pages":"6238-6247"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Label Denoising Adversarial Network (LDAN) for Inverse Lighting of Faces\",\"authors\":\"Hao Zhou, J. Sun, Y. Yacoob, D. Jacobs\",\"doi\":\"10.1109/CVPR.2018.00653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lighting estimation from faces is an important task and has applications in many areas such as image editing, intrinsic image decomposition, and image forgery detection. We propose to train a deep Convolutional Neural Network (CNN) to regress lighting parameters from a single face image. Lacking massive ground truth lighting labels for face images in the wild, we use an existing method to estimate lighting parameters, which are treated as ground truth with noise. To alleviate the effect of such noise, we utilize the idea of Generative Adversarial Networks (GAN) and propose a Label Denoising Adversarial Network (LDAN). LDAN makes use of synthetic data with accurate ground truth to help train a deep CNN for lighting regression on real face images. Experiments show that our network outperforms existing methods in producing consistent lighting parameters of different faces under similar lighting conditions. To further evaluate the proposed method, we also apply it to regress object 2D key points where ground truth labels are available. Our experiments demonstrate its effectiveness on this application.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"23 1\",\"pages\":\"6238-6247\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

人脸光照估计是一项重要的任务,在图像编辑、图像固有分解和图像伪造检测等领域都有广泛的应用。我们建议训练深度卷积神经网络(CNN)从单张人脸图像中回归照明参数。由于野外人脸图像缺乏大量的地面真值照明标签,我们使用现有的方法来估计照明参数,并将其作为带噪声的地面真值。为了减轻这种噪声的影响,我们利用生成对抗网络(GAN)的思想,提出了一种标签去噪对抗网络(LDAN)。LDAN利用具有准确地面真值的合成数据,帮助训练深度CNN对真实人脸图像进行光照回归。实验表明,在相似光照条件下,我们的网络在生成一致的人脸光照参数方面优于现有方法。为了进一步评估所提出的方法,我们还将其应用于回归地面真值标签可用的对象2D关键点。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Label Denoising Adversarial Network (LDAN) for Inverse Lighting of Faces
Lighting estimation from faces is an important task and has applications in many areas such as image editing, intrinsic image decomposition, and image forgery detection. We propose to train a deep Convolutional Neural Network (CNN) to regress lighting parameters from a single face image. Lacking massive ground truth lighting labels for face images in the wild, we use an existing method to estimate lighting parameters, which are treated as ground truth with noise. To alleviate the effect of such noise, we utilize the idea of Generative Adversarial Networks (GAN) and propose a Label Denoising Adversarial Network (LDAN). LDAN makes use of synthetic data with accurate ground truth to help train a deep CNN for lighting regression on real face images. Experiments show that our network outperforms existing methods in producing consistent lighting parameters of different faces under similar lighting conditions. To further evaluate the proposed method, we also apply it to regress object 2D key points where ground truth labels are available. Our experiments demonstrate its effectiveness on this application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信