{"title":"一种新的经验方法来估计智能材料的声学特性:第一部分","authors":"F. Nanni","doi":"10.19080/AJOP.2018.01.555557","DOIUrl":null,"url":null,"abstract":"The development of Smart materials, composite systems capable of altering their properties when subjected to external stimuli, has brought about a revolution in materials science and in modern society as a whole. In fact, smart materials can be designed basing on the requirements of a particular application and the response can be tailored up to the customer’s needs, thus allowing engineers to develop materials with many different functions embedded.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Empirical Approach to Estimate the Acoustic Properties of Smart Materials: Part I\",\"authors\":\"F. Nanni\",\"doi\":\"10.19080/AJOP.2018.01.555557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of Smart materials, composite systems capable of altering their properties when subjected to external stimuli, has brought about a revolution in materials science and in modern society as a whole. In fact, smart materials can be designed basing on the requirements of a particular application and the response can be tailored up to the customer’s needs, thus allowing engineers to develop materials with many different functions embedded.\",\"PeriodicalId\":6991,\"journal\":{\"name\":\"Academic Journal of Polymer Science\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/AJOP.2018.01.555557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/AJOP.2018.01.555557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Empirical Approach to Estimate the Acoustic Properties of Smart Materials: Part I
The development of Smart materials, composite systems capable of altering their properties when subjected to external stimuli, has brought about a revolution in materials science and in modern society as a whole. In fact, smart materials can be designed basing on the requirements of a particular application and the response can be tailored up to the customer’s needs, thus allowing engineers to develop materials with many different functions embedded.