动脉粥样硬化斑块破裂预测:基于成像的计算模拟和多物理模型

Q4 Biochemistry, Genetics and Molecular Biology
Zhiyong Li
{"title":"动脉粥样硬化斑块破裂预测:基于成像的计算模拟和多物理模型","authors":"Zhiyong Li","doi":"10.32604/mcb.2019.06308","DOIUrl":null,"url":null,"abstract":"In this article, we summarize our previous work in imaging-based computational modelling and simulation of the interaction between blood flow and atherosclerotic plaque. We also discussed our recent developments in multiphysical modelling of plaque progression and destabilization. Significance and translation of the modelling study to clinical practice are discussed in order to better assess plaque vulnerability and accurately predict a possible rupture.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Atherosclerotic Plaque Rupture Prediction: Imaging-Based Computational Simulation and Multiphysical Modelling\",\"authors\":\"Zhiyong Li\",\"doi\":\"10.32604/mcb.2019.06308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we summarize our previous work in imaging-based computational modelling and simulation of the interaction between blood flow and atherosclerotic plaque. We also discussed our recent developments in multiphysical modelling of plaque progression and destabilization. Significance and translation of the modelling study to clinical practice are discussed in order to better assess plaque vulnerability and accurately predict a possible rupture.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/mcb.2019.06308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/mcb.2019.06308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们总结了我们以前在基于成像的计算模型和血流与动脉粥样硬化斑块之间相互作用的模拟方面的工作。我们还讨论了我们在斑块进展和不稳定的多物理模型方面的最新进展。为了更好地评估斑块易感性和准确预测可能的破裂,本文讨论了模型研究在临床实践中的意义和转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atherosclerotic Plaque Rupture Prediction: Imaging-Based Computational Simulation and Multiphysical Modelling
In this article, we summarize our previous work in imaging-based computational modelling and simulation of the interaction between blood flow and atherosclerotic plaque. We also discussed our recent developments in multiphysical modelling of plaque progression and destabilization. Significance and translation of the modelling study to clinical practice are discussed in order to better assess plaque vulnerability and accurately predict a possible rupture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信