{"title":"microRNA-181a通过调节TLR4的表达参与糖尿病大鼠胃超敏反应。","authors":"Qian Sun, Shiyu Zhang, Bing-Yu Zhang, Yilian Zhang, Lijun Yao, Ji Hu, Hong-Hong Zhang","doi":"10.1177/17448069231159356","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. <b>Methods:</b> Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. <b>Results:</b> (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. <b>Conclusion:</b> The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/5c/10.1177_17448069231159356.PMC9989404.pdf","citationCount":"2","resultStr":"{\"title\":\"microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression.\",\"authors\":\"Qian Sun, Shiyu Zhang, Bing-Yu Zhang, Yilian Zhang, Lijun Yao, Ji Hu, Hong-Hong Zhang\",\"doi\":\"10.1177/17448069231159356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Aim:</b> The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. <b>Methods:</b> Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. <b>Results:</b> (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. <b>Conclusion:</b> The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/5c/10.1177_17448069231159356.PMC9989404.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069231159356\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231159356","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression.
Aim: The aim of this study is to investigate the mechanism and interaction of microRNA-181a (miR-181a), toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) in gastric hypersensitivity in diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in female SD rats. Gastric balloon distension technique was used to measure diabetic gastric hypersensitivity. Gastric-specific (T7-T10) dorsal root ganglion (DRG) neurons were acutely dissociated to measure excitability with patch-clamp techniques. Western blotting was employed to measure the expressions of TLR4, TRAF6 and NF-κB subunit p65 in T7-T10 DRGs. The expressions of microRNAs in T7-T10 DRGs were measured with quantitative real-time PCR and fluorescence in situ hybridization. Dual-luciferase reporter gene assay was used to detect the targeting regulation of microRNAs on TLR4. Results: (1) Diabetic rats were more sensitive to graded gastric balloon distention at 2 and 4 weeks. (2) The expression of TLR4 was significantly up-regulated in T7-T10 DRGs of diabetic rats. Intrathecal injection of CLI-095 (TLR4-selective inhibitor) attenuated diabetic gastric hypersensitivity, and markedly reversed the hyper-excitability of gastric-specific DRG neurons. (3) The expressions of miR-181a and miR-7a were significantly decreased in diabetic rats. MiR-181a could directly regulate the expression of TLR4, while miR-7a couldn't. (4) Intrathecal injection of miR-181a agomir down-regulated the expression of TLR4, reduced the hyper-excitability of gastric-specific neurons, and alleviated gastric hypersensitivity. (5) p65 and TLR4 were co-expressed in Dil-labeled DRG neurons. (6) Inhibition of p65 attenuated diabetic gastric hypersensitivity and hyper-excitability of gastric-specific DRG neurons. (7) The expression of TRAF6 was significantly up-regulated in diabetic rats. CLI-095 treatment also reduced the expression of TRAF6 and p65. Conclusion: The reduction of microRNA-181a in T7-T10 DRGs might up-regulate TLR4 expression. TLR4 activated NF-κB through MyD88-dependent signaling pathway, increased excitability of gastric-specific DRG neurons, and contributed to diabetic gastric hypersensitivity.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.