Joachim W Fluhr, Katarina Stevanovic, Priyanka Joshi, Karl-Christian Bergmann, Leonie S Herzog, Yasmeen Alwaheed, Shirina Al Sowaidi, Torsten Zuberbier
{"title":"草花粉和臭氧双重暴露对过敏患者皮肤生理、黏膜功能和症状的调节","authors":"Joachim W Fluhr, Katarina Stevanovic, Priyanka Joshi, Karl-Christian Bergmann, Leonie S Herzog, Yasmeen Alwaheed, Shirina Al Sowaidi, Torsten Zuberbier","doi":"10.1159/000530115","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Along with climate changes, we see an increase in allergic symptoms and the number of pollen-allergic patients in many countries. Increased allergic symptoms are associated with an elevated ozone exposure which may be linked by impaired epithelial barrier function. This study aimed to quantify the clinical effect of ozone and pollen double exposure (DE). We tested whether ozone impairs barrier-related skin physiology and mucosal functions under DE with pollen in grass pollen-allergic patients versus healthy controls.</p><p><strong>Methods: </strong>This case-control study included 8 grass pollen-allergic patients and 8 non-allergic healthy subjects exposed to grass pollen and ozone in the GA2LEN pollen chamber, comparing shorter and longer DE duration. Non-invasive skin physiological parameters were assessed, including stratum corneum hydration, skin redness, surface pH, and basal transepidermal water loss as a parameter for epidermal barrier function. The subjects' general well-being, bronchial, nasal, and ocular symptoms were documented.</p><p><strong>Results: </strong>Skin physiology tests revealed that DE in allergic patients deteriorates the epidermal barrier function and increases the surface pH and skin redness. DE significantly induced nasal secretion in pollen-allergic versus healthy subjects, which was more pronounced with longer DE. The general well-being was significantly impaired under DE versus pollen or ozone alone, with a negative influence of DE duration. No relevant bronchial symptoms were recorded.</p><p><strong>Conclusion: </strong>Skin physiology and nasal mucosal symptoms are negatively affected by ozone and grass pollen DE in allergic patients. The negative effects showed, in some parameters, a dose (time)-response relationship. The pH can be regarded as a possible modulatory mechanism.</p>","PeriodicalId":21748,"journal":{"name":"Skin Pharmacology and Physiology","volume":" ","pages":"195-204"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Skin Physiology, Mucosal Functions, and Symptoms Are Modulated by Grass Pollen and Ozone Double Exposure in Allergic Patients.\",\"authors\":\"Joachim W Fluhr, Katarina Stevanovic, Priyanka Joshi, Karl-Christian Bergmann, Leonie S Herzog, Yasmeen Alwaheed, Shirina Al Sowaidi, Torsten Zuberbier\",\"doi\":\"10.1159/000530115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Along with climate changes, we see an increase in allergic symptoms and the number of pollen-allergic patients in many countries. Increased allergic symptoms are associated with an elevated ozone exposure which may be linked by impaired epithelial barrier function. This study aimed to quantify the clinical effect of ozone and pollen double exposure (DE). We tested whether ozone impairs barrier-related skin physiology and mucosal functions under DE with pollen in grass pollen-allergic patients versus healthy controls.</p><p><strong>Methods: </strong>This case-control study included 8 grass pollen-allergic patients and 8 non-allergic healthy subjects exposed to grass pollen and ozone in the GA2LEN pollen chamber, comparing shorter and longer DE duration. Non-invasive skin physiological parameters were assessed, including stratum corneum hydration, skin redness, surface pH, and basal transepidermal water loss as a parameter for epidermal barrier function. The subjects' general well-being, bronchial, nasal, and ocular symptoms were documented.</p><p><strong>Results: </strong>Skin physiology tests revealed that DE in allergic patients deteriorates the epidermal barrier function and increases the surface pH and skin redness. DE significantly induced nasal secretion in pollen-allergic versus healthy subjects, which was more pronounced with longer DE. The general well-being was significantly impaired under DE versus pollen or ozone alone, with a negative influence of DE duration. No relevant bronchial symptoms were recorded.</p><p><strong>Conclusion: </strong>Skin physiology and nasal mucosal symptoms are negatively affected by ozone and grass pollen DE in allergic patients. The negative effects showed, in some parameters, a dose (time)-response relationship. The pH can be regarded as a possible modulatory mechanism.</p>\",\"PeriodicalId\":21748,\"journal\":{\"name\":\"Skin Pharmacology and Physiology\",\"volume\":\" \",\"pages\":\"195-204\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skin Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000530115\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skin Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000530115","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Skin Physiology, Mucosal Functions, and Symptoms Are Modulated by Grass Pollen and Ozone Double Exposure in Allergic Patients.
Introduction: Along with climate changes, we see an increase in allergic symptoms and the number of pollen-allergic patients in many countries. Increased allergic symptoms are associated with an elevated ozone exposure which may be linked by impaired epithelial barrier function. This study aimed to quantify the clinical effect of ozone and pollen double exposure (DE). We tested whether ozone impairs barrier-related skin physiology and mucosal functions under DE with pollen in grass pollen-allergic patients versus healthy controls.
Methods: This case-control study included 8 grass pollen-allergic patients and 8 non-allergic healthy subjects exposed to grass pollen and ozone in the GA2LEN pollen chamber, comparing shorter and longer DE duration. Non-invasive skin physiological parameters were assessed, including stratum corneum hydration, skin redness, surface pH, and basal transepidermal water loss as a parameter for epidermal barrier function. The subjects' general well-being, bronchial, nasal, and ocular symptoms were documented.
Results: Skin physiology tests revealed that DE in allergic patients deteriorates the epidermal barrier function and increases the surface pH and skin redness. DE significantly induced nasal secretion in pollen-allergic versus healthy subjects, which was more pronounced with longer DE. The general well-being was significantly impaired under DE versus pollen or ozone alone, with a negative influence of DE duration. No relevant bronchial symptoms were recorded.
Conclusion: Skin physiology and nasal mucosal symptoms are negatively affected by ozone and grass pollen DE in allergic patients. The negative effects showed, in some parameters, a dose (time)-response relationship. The pH can be regarded as a possible modulatory mechanism.
期刊介绍:
In the past decade research into skin pharmacology has rapidly developed with new and promising drugs and therapeutic concepts being introduced regularly. Recently, the use of nanoparticles for drug delivery in dermatology and cosmetology has become a topic of intensive research, yielding remarkable and in part surprising results. Another topic of current research is the use of tissue tolerable plasma in wound treatment. Stimulating not only wound healing processes but also the penetration of topically applied substances into the skin, this novel technique is expected to deliver very interesting results.