OzNet:用于 COVID-19 计算机断层扫描自动分类的新型深度学习方法。

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Big Data Pub Date : 2023-12-01 Epub Date: 2023-03-16 DOI:10.1089/big.2022.0042
Oznur Ozaltin, Ozgur Yeniay, Abdulhamit Subasi
{"title":"OzNet:用于 COVID-19 计算机断层扫描自动分类的新型深度学习方法。","authors":"Oznur Ozaltin, Ozgur Yeniay, Abdulhamit Subasi","doi":"10.1089/big.2022.0042","DOIUrl":null,"url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. Therefore, the classification of computed tomography (CT) scans alleviates the workload of experts, whose workload increased considerably during the pandemic. Convolutional neural network (CNN) architectures are successful for the classification of medical images. In this study, we have developed a new deep CNN architecture called OzNet. Moreover, we have compared it with pretrained architectures namely AlexNet, DenseNet201, GoogleNet, NASNetMobile, ResNet-50, SqueezeNet, and VGG-16. In addition, we have compared the classification success of three preprocessing methods with raw CT scans. We have not only classified the raw CT scans, but also have performed the classification with three different preprocessing methods, which are discrete wavelet transform (DWT), intensity adjustment, and gray to color red, green, blue image conversion on the data sets. Furthermore, it is known that the architecture's performance increases with the use of DWT preprocessing method rather than using the raw data set. The results are extremely promising with the CNN algorithms using the COVID-19 CT scans processed with the DWT. The proposed DWT-OzNet has achieved a high classification performance of more than 98.8% for each calculated metric.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"420-436"},"PeriodicalIF":2.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OzNet: A New Deep Learning Approach for Automated Classification of COVID-19 Computed Tomography Scans.\",\"authors\":\"Oznur Ozaltin, Ozgur Yeniay, Abdulhamit Subasi\",\"doi\":\"10.1089/big.2022.0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. Therefore, the classification of computed tomography (CT) scans alleviates the workload of experts, whose workload increased considerably during the pandemic. Convolutional neural network (CNN) architectures are successful for the classification of medical images. In this study, we have developed a new deep CNN architecture called OzNet. Moreover, we have compared it with pretrained architectures namely AlexNet, DenseNet201, GoogleNet, NASNetMobile, ResNet-50, SqueezeNet, and VGG-16. In addition, we have compared the classification success of three preprocessing methods with raw CT scans. We have not only classified the raw CT scans, but also have performed the classification with three different preprocessing methods, which are discrete wavelet transform (DWT), intensity adjustment, and gray to color red, green, blue image conversion on the data sets. Furthermore, it is known that the architecture's performance increases with the use of DWT preprocessing method rather than using the raw data set. The results are extremely promising with the CNN algorithms using the COVID-19 CT scans processed with the DWT. The proposed DWT-OzNet has achieved a high classification performance of more than 98.8% for each calculated metric.</p>\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\" \",\"pages\":\"420-436\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/big.2022.0042\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0042","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

2019 年冠状病毒病(COVID-19)正在全球迅速蔓延。因此,计算机断层扫描(CT)扫描的分类可减轻专家的工作量,而在该疾病流行期间,专家的工作量大大增加。卷积神经网络(CNN)架构在医学图像分类方面取得了成功。在这项研究中,我们开发了一种名为 OzNet 的新型深度 CNN 架构。此外,我们还将其与经过预训练的架构(即 AlexNet、DenseNet201、GoogleNet、NASNetMobile、ResNet-50、SqueezeNet 和 VGG-16)进行了比较。此外,我们还比较了三种预处理方法与原始 CT 扫描的分类成功率。我们不仅对原始 CT 扫描图像进行了分类,还采用了三种不同的预处理方法,即离散小波变换 (DWT)、强度调整和红绿蓝图像灰度到彩色的转换,对数据集进行了分类。此外,众所周知,使用 DWT 预处理方法比使用原始数据集的架构性能更高。使用经 DWT 处理的 COVID-19 CT 扫描数据的 CNN 算法取得了非常理想的结果。所提出的 DWT-OzNet 在每个计算指标上都达到了 98.8% 以上的高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OzNet: A New Deep Learning Approach for Automated Classification of COVID-19 Computed Tomography Scans.

Coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. Therefore, the classification of computed tomography (CT) scans alleviates the workload of experts, whose workload increased considerably during the pandemic. Convolutional neural network (CNN) architectures are successful for the classification of medical images. In this study, we have developed a new deep CNN architecture called OzNet. Moreover, we have compared it with pretrained architectures namely AlexNet, DenseNet201, GoogleNet, NASNetMobile, ResNet-50, SqueezeNet, and VGG-16. In addition, we have compared the classification success of three preprocessing methods with raw CT scans. We have not only classified the raw CT scans, but also have performed the classification with three different preprocessing methods, which are discrete wavelet transform (DWT), intensity adjustment, and gray to color red, green, blue image conversion on the data sets. Furthermore, it is known that the architecture's performance increases with the use of DWT preprocessing method rather than using the raw data set. The results are extremely promising with the CNN algorithms using the COVID-19 CT scans processed with the DWT. The proposed DWT-OzNet has achieved a high classification performance of more than 98.8% for each calculated metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data
Big Data COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍: Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions. Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government. Big Data coverage includes: Big data industry standards, New technologies being developed specifically for big data, Data acquisition, cleaning, distribution, and best practices, Data protection, privacy, and policy, Business interests from research to product, The changing role of business intelligence, Visualization and design principles of big data infrastructures, Physical interfaces and robotics, Social networking advantages for Facebook, Twitter, Amazon, Google, etc, Opportunities around big data and how companies can harness it to their advantage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信