用于分类归纳的嵌入空间无监督树提取

François Torregrossa, Robin Allesiardo, V. Claveau, G. Gravier
{"title":"用于分类归纳的嵌入空间无监督树提取","authors":"François Torregrossa, Robin Allesiardo, V. Claveau, G. Gravier","doi":"10.1145/3486622.3493941","DOIUrl":null,"url":null,"abstract":"Exposing latent structure (graph, tree...) of data is a major challenge to deal with the web of data. Today’s embedding techniques incorporate any data source (noisy graphs, item similarities, plain text) into continuous vector spaces that are typically used as input to classifier. In this work, we are dealing with the opposite task: finding structures (taxonomies) from embedded data. We provide an original unsupervised methodology for taxonomy induction by directly searching for graph structures preserving pairwise distances between items. Contrary to the state-of-the-art (SOTA), our approach does not require to train classifiers; it is also more versatile as it can be applied to any embedding (eg. word embedding, similarity embedding like space-time local embedding...). On standard benchmarks and metrics, our approach yields SOTA performance. As another contribution, we propose better evaluation metrics for taxonomy induction, leveraging graph kernel similarities and edit distance, showing that the structures of our predicted taxonomies are significantly closer to the ground-truth than SOTA solutions.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Tree Extraction in Embedding Spaces for Taxonomy Induction\",\"authors\":\"François Torregrossa, Robin Allesiardo, V. Claveau, G. Gravier\",\"doi\":\"10.1145/3486622.3493941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exposing latent structure (graph, tree...) of data is a major challenge to deal with the web of data. Today’s embedding techniques incorporate any data source (noisy graphs, item similarities, plain text) into continuous vector spaces that are typically used as input to classifier. In this work, we are dealing with the opposite task: finding structures (taxonomies) from embedded data. We provide an original unsupervised methodology for taxonomy induction by directly searching for graph structures preserving pairwise distances between items. Contrary to the state-of-the-art (SOTA), our approach does not require to train classifiers; it is also more versatile as it can be applied to any embedding (eg. word embedding, similarity embedding like space-time local embedding...). On standard benchmarks and metrics, our approach yields SOTA performance. As another contribution, we propose better evaluation metrics for taxonomy induction, leveraging graph kernel similarities and edit distance, showing that the structures of our predicted taxonomies are significantly closer to the ground-truth than SOTA solutions.\",\"PeriodicalId\":89230,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3486622.3493941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

揭示数据的潜在结构(图、树……)是处理数据网络的主要挑战。今天的嵌入技术将任何数据源(噪声图、项目相似性、纯文本)合并到连续向量空间中,通常用作分类器的输入。在这项工作中,我们处理的是相反的任务:从嵌入数据中查找结构(分类)。我们通过直接搜索保持项目之间成对距离的图结构,为分类归纳提供了一种原始的无监督方法。与最先进的(SOTA)相反,我们的方法不需要训练分类器;它也更通用,因为它可以应用于任何嵌入(例如。词嵌入,类似时空局部嵌入的相似度嵌入…)。在标准基准和指标上,我们的方法产生SOTA性能。作为另一个贡献,我们提出了更好的分类归纳评估指标,利用图核相似性和编辑距离,表明我们预测的分类结构比SOTA解决方案更接近基本事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Tree Extraction in Embedding Spaces for Taxonomy Induction
Exposing latent structure (graph, tree...) of data is a major challenge to deal with the web of data. Today’s embedding techniques incorporate any data source (noisy graphs, item similarities, plain text) into continuous vector spaces that are typically used as input to classifier. In this work, we are dealing with the opposite task: finding structures (taxonomies) from embedded data. We provide an original unsupervised methodology for taxonomy induction by directly searching for graph structures preserving pairwise distances between items. Contrary to the state-of-the-art (SOTA), our approach does not require to train classifiers; it is also more versatile as it can be applied to any embedding (eg. word embedding, similarity embedding like space-time local embedding...). On standard benchmarks and metrics, our approach yields SOTA performance. As another contribution, we propose better evaluation metrics for taxonomy induction, leveraging graph kernel similarities and edit distance, showing that the structures of our predicted taxonomies are significantly closer to the ground-truth than SOTA solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信