具有超高神经形态效能的电荷介导的碘化铜人工突触装置

D. S. Assi, Hongli Huang, Kadir Ufuk Kandira, Nasser S. Alsulaiman, Vaskuri C. S. Theja, Hasan T. Abbas, V. Karthikeyan, Vellaisamy A. L. Roy
{"title":"具有超高神经形态效能的电荷介导的碘化铜人工突触装置","authors":"D. S. Assi, Hongli Huang, Kadir Ufuk Kandira, Nasser S. Alsulaiman, Vaskuri C. S. Theja, Hasan T. Abbas, V. Karthikeyan, Vellaisamy A. L. Roy","doi":"10.1002/pssr.202300191","DOIUrl":null,"url":null,"abstract":"In the realm of artificial intelligence, ultrahigh‐performance neuromorphic computing plays a significant role in executing multiple complex operations in parallel while adhering to a more biologically plausible model. Despite their importance, developing an artificial synaptic device to match the human brain's efficiency is an extremely complex task involving high energy consumption and poor parallel processing latency. Herein, a simple molecule, copper‐iodide‐based artificial synaptic device demonstrating core synaptic functions of human neural networks is introduced. Exceptionally high carrier mobility and dielectric constant in the developed device lead to superior efficacies in neuromorphic characteristics with ultrahigh paired‐pusle facilitation index (>195). The results demonstrate biomimetic capabilities that exert a direct influence on neural networks across multiple timescales, ranging from short‐ to long‐term memory. This flexible reconfiguration of neural excitability provided by the copper‐iodide‐based synaptic device positions it as a promising candidate for creating advanced artificial intelligence systems.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge‐Mediated Copper‐Iodide‐Based Artificial Synaptic Device with Ultrahigh Neuromorphic Efficacy\",\"authors\":\"D. S. Assi, Hongli Huang, Kadir Ufuk Kandira, Nasser S. Alsulaiman, Vaskuri C. S. Theja, Hasan T. Abbas, V. Karthikeyan, Vellaisamy A. L. Roy\",\"doi\":\"10.1002/pssr.202300191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of artificial intelligence, ultrahigh‐performance neuromorphic computing plays a significant role in executing multiple complex operations in parallel while adhering to a more biologically plausible model. Despite their importance, developing an artificial synaptic device to match the human brain's efficiency is an extremely complex task involving high energy consumption and poor parallel processing latency. Herein, a simple molecule, copper‐iodide‐based artificial synaptic device demonstrating core synaptic functions of human neural networks is introduced. Exceptionally high carrier mobility and dielectric constant in the developed device lead to superior efficacies in neuromorphic characteristics with ultrahigh paired‐pusle facilitation index (>195). The results demonstrate biomimetic capabilities that exert a direct influence on neural networks across multiple timescales, ranging from short‐ to long‐term memory. This flexible reconfiguration of neural excitability provided by the copper‐iodide‐based synaptic device positions it as a promising candidate for creating advanced artificial intelligence systems.\",\"PeriodicalId\":20059,\"journal\":{\"name\":\"physica status solidi (RRL) – Rapid Research Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"physica status solidi (RRL) – Rapid Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pssr.202300191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在人工智能领域,超高性能的神经形态计算在并行执行多个复杂操作方面发挥着重要作用,同时遵循更合理的生物学模型。尽管它们很重要,但开发一种人造突触装置来匹配人类大脑的效率是一项极其复杂的任务,涉及高能量消耗和低并行处理延迟。本文介绍了一种基于碘化铜的简单分子人工突触装置,该装置展示了人类神经网络的核心突触功能。在开发的装置中,异常高的载流子迁移率和介电常数导致具有超高成对脉冲促进指数的神经形态特征的优越效率(>195)。研究结果表明,仿生能力在多个时间尺度(从短期到长期记忆)上对神经网络产生直接影响。这种基于碘化铜的突触装置提供的神经兴奋性的灵活重构使其成为创建先进人工智能系统的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Charge‐Mediated Copper‐Iodide‐Based Artificial Synaptic Device with Ultrahigh Neuromorphic Efficacy
In the realm of artificial intelligence, ultrahigh‐performance neuromorphic computing plays a significant role in executing multiple complex operations in parallel while adhering to a more biologically plausible model. Despite their importance, developing an artificial synaptic device to match the human brain's efficiency is an extremely complex task involving high energy consumption and poor parallel processing latency. Herein, a simple molecule, copper‐iodide‐based artificial synaptic device demonstrating core synaptic functions of human neural networks is introduced. Exceptionally high carrier mobility and dielectric constant in the developed device lead to superior efficacies in neuromorphic characteristics with ultrahigh paired‐pusle facilitation index (>195). The results demonstrate biomimetic capabilities that exert a direct influence on neural networks across multiple timescales, ranging from short‐ to long‐term memory. This flexible reconfiguration of neural excitability provided by the copper‐iodide‐based synaptic device positions it as a promising candidate for creating advanced artificial intelligence systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信