{"title":"高效液相色谱法分离桦木素及其衍生物并测定部分植物和白桦茸提取物的含量","authors":"V. V. Sursyakova, V. Levdansky, A. I. Rubaylo","doi":"10.1080/10826076.2023.2251152","DOIUrl":null,"url":null,"abstract":"Abstract The influence of conditions on the separation of betulin (BT), betulinic (BIA), and betulonic (BOA) acids by reversed-phase high-performance liquid chromatography (RP-HPLC) with isocratic elution was studied. It was shown that the order of peaks in chromatograms changed with varying the acetonitrile (ACN) content in the mobile phase, and a poor separation under certain conditions was observed. The highest peak resolution with minimal retention times was at a column temperature of 20 °C, flow rate of 0.25 ml/min, and 92.5% ACN in the mobile phase. The extracts from jujube (Ziziphus jujuba) dried fruit, chaga mushroom (Inonotus obliquus), and white birch bark (Betula pendula) were studied using the obtained conditions. For extracts from the first two sources, it was found that peaks of the compound studied interfered with unknown peaks. By varying the ACN content in the mobile phase with a small step from run to run and tracking the peaks, a baseline separation was achieved. The optimal % ACN in the mobile phase was 87 and 89 for the extracts from jujube and chaga mushroom, respectively. Jujube dried fruit was found to contain, in terms of dry weight of the jujube, 0.223 ± 0.008 mg/g of BIA and 0.044 ± 0.006 mg/g of BOA. Chaga mushroom studied contains 0.022 ± 0.004 mg/g of BT and 0.062 ± 0.009 mg/g of BIA. White birch bark contains 50.9 ± 0.7 mg/g of BT, 11.2 ± 0.3 mg/g of BIA, and 2.5 ± 0.3 mg/g of BOA. GRAPHICAL ABSTRACT","PeriodicalId":16295,"journal":{"name":"Journal of Liquid Chromatography & Related Technologies","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of betulin and its derivatives by high-performance liquid chromatography and their determination in extracts of some plants and chaga mushroom\",\"authors\":\"V. V. Sursyakova, V. Levdansky, A. I. Rubaylo\",\"doi\":\"10.1080/10826076.2023.2251152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The influence of conditions on the separation of betulin (BT), betulinic (BIA), and betulonic (BOA) acids by reversed-phase high-performance liquid chromatography (RP-HPLC) with isocratic elution was studied. It was shown that the order of peaks in chromatograms changed with varying the acetonitrile (ACN) content in the mobile phase, and a poor separation under certain conditions was observed. The highest peak resolution with minimal retention times was at a column temperature of 20 °C, flow rate of 0.25 ml/min, and 92.5% ACN in the mobile phase. The extracts from jujube (Ziziphus jujuba) dried fruit, chaga mushroom (Inonotus obliquus), and white birch bark (Betula pendula) were studied using the obtained conditions. For extracts from the first two sources, it was found that peaks of the compound studied interfered with unknown peaks. By varying the ACN content in the mobile phase with a small step from run to run and tracking the peaks, a baseline separation was achieved. The optimal % ACN in the mobile phase was 87 and 89 for the extracts from jujube and chaga mushroom, respectively. Jujube dried fruit was found to contain, in terms of dry weight of the jujube, 0.223 ± 0.008 mg/g of BIA and 0.044 ± 0.006 mg/g of BOA. Chaga mushroom studied contains 0.022 ± 0.004 mg/g of BT and 0.062 ± 0.009 mg/g of BIA. White birch bark contains 50.9 ± 0.7 mg/g of BT, 11.2 ± 0.3 mg/g of BIA, and 2.5 ± 0.3 mg/g of BOA. GRAPHICAL ABSTRACT\",\"PeriodicalId\":16295,\"journal\":{\"name\":\"Journal of Liquid Chromatography & Related Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liquid Chromatography & Related Technologies\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10826076.2023.2251152\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liquid Chromatography & Related Technologies","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10826076.2023.2251152","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Separation of betulin and its derivatives by high-performance liquid chromatography and their determination in extracts of some plants and chaga mushroom
Abstract The influence of conditions on the separation of betulin (BT), betulinic (BIA), and betulonic (BOA) acids by reversed-phase high-performance liquid chromatography (RP-HPLC) with isocratic elution was studied. It was shown that the order of peaks in chromatograms changed with varying the acetonitrile (ACN) content in the mobile phase, and a poor separation under certain conditions was observed. The highest peak resolution with minimal retention times was at a column temperature of 20 °C, flow rate of 0.25 ml/min, and 92.5% ACN in the mobile phase. The extracts from jujube (Ziziphus jujuba) dried fruit, chaga mushroom (Inonotus obliquus), and white birch bark (Betula pendula) were studied using the obtained conditions. For extracts from the first two sources, it was found that peaks of the compound studied interfered with unknown peaks. By varying the ACN content in the mobile phase with a small step from run to run and tracking the peaks, a baseline separation was achieved. The optimal % ACN in the mobile phase was 87 and 89 for the extracts from jujube and chaga mushroom, respectively. Jujube dried fruit was found to contain, in terms of dry weight of the jujube, 0.223 ± 0.008 mg/g of BIA and 0.044 ± 0.006 mg/g of BOA. Chaga mushroom studied contains 0.022 ± 0.004 mg/g of BT and 0.062 ± 0.009 mg/g of BIA. White birch bark contains 50.9 ± 0.7 mg/g of BT, 11.2 ± 0.3 mg/g of BIA, and 2.5 ± 0.3 mg/g of BOA. GRAPHICAL ABSTRACT
期刊介绍:
The Journal of Liquid Chromatography & Related Technologies is an internationally acclaimed forum for fast publication of critical, peer reviewed manuscripts dealing with analytical, preparative and process scale liquid chromatography and all of its related technologies, including TLC, capillary electrophoresis, capillary electrochromatography, supercritical fluid chromatography and extraction, field-flow technologies, affinity, and much more. New separation methodologies are added when they are developed. Papers dealing with research and development results, as well as critical reviews of important technologies, are published in the Journal.