{"title":"新型内燃机用螺旋导管颗粒物分离器的研制","authors":"D. Vashist, M. Bindra","doi":"10.15282/ijame.19.3.2022.11.0771","DOIUrl":null,"url":null,"abstract":"In compliance with the stringent BS-VI emission norms, control of particulate matter in diesel engine exhaust emission is currently achieved through diesel particulate filters, catalytic convertors, and baffle filters of various designs. In the present study a device comprised of a spiral duct with an increasing cross-sectional area over the length is designed and developed. The duct has a lining of heat-resistant and porous material fixed along the inside walls. The inlet of the devices is connected to the outlet of the tailpipe of the exhaust system. The device will collect the particulate matter in the heat-resistant porous lining along the walls of the spiral. The developed device is simple, economical and easily serviceable. The developed spiral duct particulate matter separator was tested on diesel vehicles, and the smoke density of tailpipe emission was measured in terms of the light absorption coefficient. During the analysis it was found that there is a reduction in light absorption coefficient by 25.37%. The developed design also overcomes the clogging problem of the exhaust system, which is a cause of backpressure in the case of conventional particulate filters. The design of the device is such that it can be easily retrofitted in the existing fleet of vehicles, making them compliant with stringent statuary emission norms.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Novel Spiral Duct Particulate Matter Separator for Internal Combustion Engines\",\"authors\":\"D. Vashist, M. Bindra\",\"doi\":\"10.15282/ijame.19.3.2022.11.0771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In compliance with the stringent BS-VI emission norms, control of particulate matter in diesel engine exhaust emission is currently achieved through diesel particulate filters, catalytic convertors, and baffle filters of various designs. In the present study a device comprised of a spiral duct with an increasing cross-sectional area over the length is designed and developed. The duct has a lining of heat-resistant and porous material fixed along the inside walls. The inlet of the devices is connected to the outlet of the tailpipe of the exhaust system. The device will collect the particulate matter in the heat-resistant porous lining along the walls of the spiral. The developed device is simple, economical and easily serviceable. The developed spiral duct particulate matter separator was tested on diesel vehicles, and the smoke density of tailpipe emission was measured in terms of the light absorption coefficient. During the analysis it was found that there is a reduction in light absorption coefficient by 25.37%. The developed design also overcomes the clogging problem of the exhaust system, which is a cause of backpressure in the case of conventional particulate filters. The design of the device is such that it can be easily retrofitted in the existing fleet of vehicles, making them compliant with stringent statuary emission norms.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.3.2022.11.0771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.3.2022.11.0771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Development of a Novel Spiral Duct Particulate Matter Separator for Internal Combustion Engines
In compliance with the stringent BS-VI emission norms, control of particulate matter in diesel engine exhaust emission is currently achieved through diesel particulate filters, catalytic convertors, and baffle filters of various designs. In the present study a device comprised of a spiral duct with an increasing cross-sectional area over the length is designed and developed. The duct has a lining of heat-resistant and porous material fixed along the inside walls. The inlet of the devices is connected to the outlet of the tailpipe of the exhaust system. The device will collect the particulate matter in the heat-resistant porous lining along the walls of the spiral. The developed device is simple, economical and easily serviceable. The developed spiral duct particulate matter separator was tested on diesel vehicles, and the smoke density of tailpipe emission was measured in terms of the light absorption coefficient. During the analysis it was found that there is a reduction in light absorption coefficient by 25.37%. The developed design also overcomes the clogging problem of the exhaust system, which is a cause of backpressure in the case of conventional particulate filters. The design of the device is such that it can be easily retrofitted in the existing fleet of vehicles, making them compliant with stringent statuary emission norms.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.