亚北极太平洋西部优势水螅动物数字化阿格兰塔垂直分布和种群结构的季节变化

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Tianlun Gao, Mari Aizawa, A. Yamaguchi
{"title":"亚北极太平洋西部优势水螅动物数字化阿格兰塔垂直分布和种群结构的季节变化","authors":"Tianlun Gao, Mari Aizawa, A. Yamaguchi","doi":"10.3390/oceans4030017","DOIUrl":null,"url":null,"abstract":"Hydrozoans are numerically dominant taxa in gelatinous zooplankton communities of the worldwide oceans and play an energy transfer role connecting primary producers and higher trophic level organisms. In the western subarctic Pacific, St. K2 has been established as a long-term time-series monitoring station. Various studies on zooplankton have been conducted, while hydrozoans have not been treated. This study presents the abundance, vertical distribution, and population structure of the dominant hydrozoan species (Aglantha digitale) at St. K2. Samples collected by vertical stratification samplings from eight layers of 0–1000 m both day and night during four seasons in one year. Hydrozoans occur throughout the year. The annual mean abundance of A. digitale was 198.4 ind. m−2 and composed of 91.9% of hydrozoans. The vertical distribution of A. digitale was concentrated for the epipelagic layer (0–200 m), both day and night of the most season. The bell height (BH) of A. digitale ranged between 2.4–18.9 mm. Most of the mature individuals, with gonad length larger than 10% of BH, occurred only in July. The BH of mature individuals ranged from 4.7 to 17.6 mm, with the BH of most mature individuals were larger than >10 mm. Through observation on BH at each sampling layer, small individuals with BH < 6 mm were distributed below 300 m depths throughout the seasons, expanding their vertical distribution to the deeper layers. Inter-region comparison of abundance, maturation body size, and generation length of A. digitale revealed that these parameters are varied with the region and depend on the marine ecosystem structures.","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"64 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal Changes in Vertical Distribution and Population Structure of the Dominant Hydrozoan Aglantha digitale in the Western Subarctic Pacific\",\"authors\":\"Tianlun Gao, Mari Aizawa, A. Yamaguchi\",\"doi\":\"10.3390/oceans4030017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrozoans are numerically dominant taxa in gelatinous zooplankton communities of the worldwide oceans and play an energy transfer role connecting primary producers and higher trophic level organisms. In the western subarctic Pacific, St. K2 has been established as a long-term time-series monitoring station. Various studies on zooplankton have been conducted, while hydrozoans have not been treated. This study presents the abundance, vertical distribution, and population structure of the dominant hydrozoan species (Aglantha digitale) at St. K2. Samples collected by vertical stratification samplings from eight layers of 0–1000 m both day and night during four seasons in one year. Hydrozoans occur throughout the year. The annual mean abundance of A. digitale was 198.4 ind. m−2 and composed of 91.9% of hydrozoans. The vertical distribution of A. digitale was concentrated for the epipelagic layer (0–200 m), both day and night of the most season. The bell height (BH) of A. digitale ranged between 2.4–18.9 mm. Most of the mature individuals, with gonad length larger than 10% of BH, occurred only in July. The BH of mature individuals ranged from 4.7 to 17.6 mm, with the BH of most mature individuals were larger than >10 mm. Through observation on BH at each sampling layer, small individuals with BH < 6 mm were distributed below 300 m depths throughout the seasons, expanding their vertical distribution to the deeper layers. Inter-region comparison of abundance, maturation body size, and generation length of A. digitale revealed that these parameters are varied with the region and depend on the marine ecosystem structures.\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/oceans4030017\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/oceans4030017","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

水生动物是全球海洋胶状浮游动物群落中数量优势的分类群,在初级生产者和高营养级生物之间起着能量传递作用。在亚北极太平洋西部,圣乔戈里岛已被建立为一个长期时间序列监测站。人们对浮游动物进行了各种各样的研究,而对水生动物却没有进行研究。对St. K2的优势水螅动物Aglantha digitale的丰度、垂直分布和种群结构进行了研究。采用垂直分层法,一年四季在0 ~ 1000 m的8层昼夜取样。水螅虫全年都有。年平均丰度为198.4 ind. m - 2,占水螅类的91.9%。垂直分布主要集中在上层(0 ~ 200 m),大部分季节白天和夜间均有分布。钟高(BH)在2.4-18.9 mm之间。性腺长度大于BH的10%的成熟个体大多发生在7月份。成熟个体胸径在4.7 ~ 17.6 mm之间,大多数成熟个体胸径大于10 mm。通过对各采样层BH的观测,BH < 6 mm的小个体全年均分布在300 m以下,垂直分布向深层扩展。不同区域间数字刺参的丰度、成熟体大小和世代长度的比较表明,这些参数随区域而变化,并与海洋生态系统结构有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal Changes in Vertical Distribution and Population Structure of the Dominant Hydrozoan Aglantha digitale in the Western Subarctic Pacific
Hydrozoans are numerically dominant taxa in gelatinous zooplankton communities of the worldwide oceans and play an energy transfer role connecting primary producers and higher trophic level organisms. In the western subarctic Pacific, St. K2 has been established as a long-term time-series monitoring station. Various studies on zooplankton have been conducted, while hydrozoans have not been treated. This study presents the abundance, vertical distribution, and population structure of the dominant hydrozoan species (Aglantha digitale) at St. K2. Samples collected by vertical stratification samplings from eight layers of 0–1000 m both day and night during four seasons in one year. Hydrozoans occur throughout the year. The annual mean abundance of A. digitale was 198.4 ind. m−2 and composed of 91.9% of hydrozoans. The vertical distribution of A. digitale was concentrated for the epipelagic layer (0–200 m), both day and night of the most season. The bell height (BH) of A. digitale ranged between 2.4–18.9 mm. Most of the mature individuals, with gonad length larger than 10% of BH, occurred only in July. The BH of mature individuals ranged from 4.7 to 17.6 mm, with the BH of most mature individuals were larger than >10 mm. Through observation on BH at each sampling layer, small individuals with BH < 6 mm were distributed below 300 m depths throughout the seasons, expanding their vertical distribution to the deeper layers. Inter-region comparison of abundance, maturation body size, and generation length of A. digitale revealed that these parameters are varied with the region and depend on the marine ecosystem structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信