{"title":"采用多壁碳纳米管的高密度集成电容器","authors":"A. Nieuwoudt, Y. Massoud","doi":"10.1109/NANO.2007.4601215","DOIUrl":null,"url":null,"abstract":"The development of high density integrated capacitors is crucial for the implementation of high performance mixed-signal integrated circuits. In this paper, we propose three possible high density integrated capacitor configurations based on multi-walled carbon nanotubes (MWCNT). We develop an RLC model for the MWCNT-based capacitor configurations and examine the design trade-off between capacitance per area and losses due to parasitic resistance and inductance. The results indicate that the proposed MWCNT based capacitor configurations can potentially offer orders of magnitude larger capacitance per area and comparable quality factors to traditional metal-based integrated capacitors.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"10 1","pages":"387-390"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High density integrated capacitors using multi-walled carbon nanotubes\",\"authors\":\"A. Nieuwoudt, Y. Massoud\",\"doi\":\"10.1109/NANO.2007.4601215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high density integrated capacitors is crucial for the implementation of high performance mixed-signal integrated circuits. In this paper, we propose three possible high density integrated capacitor configurations based on multi-walled carbon nanotubes (MWCNT). We develop an RLC model for the MWCNT-based capacitor configurations and examine the design trade-off between capacitance per area and losses due to parasitic resistance and inductance. The results indicate that the proposed MWCNT based capacitor configurations can potentially offer orders of magnitude larger capacitance per area and comparable quality factors to traditional metal-based integrated capacitors.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"10 1\",\"pages\":\"387-390\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High density integrated capacitors using multi-walled carbon nanotubes
The development of high density integrated capacitors is crucial for the implementation of high performance mixed-signal integrated circuits. In this paper, we propose three possible high density integrated capacitor configurations based on multi-walled carbon nanotubes (MWCNT). We develop an RLC model for the MWCNT-based capacitor configurations and examine the design trade-off between capacitance per area and losses due to parasitic resistance and inductance. The results indicate that the proposed MWCNT based capacitor configurations can potentially offer orders of magnitude larger capacitance per area and comparable quality factors to traditional metal-based integrated capacitors.