大型递归树的切割树

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
J. Bertoin
{"title":"大型递归树的切割树","authors":"J. Bertoin","doi":"10.1214/13-AIHP597","DOIUrl":null,"url":null,"abstract":"Imagine a graph which is progressively destroyed by cutting its edges one after the other in a uniform random order. The so-called cut-tree records key steps of this destruction process. It can be viewed as a random metric space equipped with a natural probability mass. In this work, we show that the cut-tree of a random recursive tree of size n, rescaled by the factor n−1 lnn, converges in probability as n → ∞ in the sense of GromovHausdorff-Prokhorov, to the unit interval endowed with the usual distance and Lebesgue measure. This enables us to explain and extend some recent results of Kuba and Panholzer [15] on multiple isolation of nodes in random recursive trees.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"1 1","pages":"478-488"},"PeriodicalIF":1.2000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The cut-tree of large recursive trees\",\"authors\":\"J. Bertoin\",\"doi\":\"10.1214/13-AIHP597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imagine a graph which is progressively destroyed by cutting its edges one after the other in a uniform random order. The so-called cut-tree records key steps of this destruction process. It can be viewed as a random metric space equipped with a natural probability mass. In this work, we show that the cut-tree of a random recursive tree of size n, rescaled by the factor n−1 lnn, converges in probability as n → ∞ in the sense of GromovHausdorff-Prokhorov, to the unit interval endowed with the usual distance and Lebesgue measure. This enables us to explain and extend some recent results of Kuba and Panholzer [15] on multiple isolation of nodes in random recursive trees.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"1 1\",\"pages\":\"478-488\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/13-AIHP597\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/13-AIHP597","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 14

摘要

想象一个图,它的边缘被一个接一个地以均匀的随机顺序切割而逐渐被破坏。所谓的“砍树”记录了这种破坏过程的关键步骤。它可以看作是一个具有自然概率质量的随机度量空间。在本文中,我们证明了一个大小为n的随机递归树的切树,在GromovHausdorff-Prokhorov意义下,以n→∞的概率收敛到具有通常距离和勒贝格测度的单位区间。这使我们能够解释和扩展Kuba和Panholzer[15]最近关于随机递归树中节点的多重隔离的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The cut-tree of large recursive trees
Imagine a graph which is progressively destroyed by cutting its edges one after the other in a uniform random order. The so-called cut-tree records key steps of this destruction process. It can be viewed as a random metric space equipped with a natural probability mass. In this work, we show that the cut-tree of a random recursive tree of size n, rescaled by the factor n−1 lnn, converges in probability as n → ∞ in the sense of GromovHausdorff-Prokhorov, to the unit interval endowed with the usual distance and Lebesgue measure. This enables us to explain and extend some recent results of Kuba and Panholzer [15] on multiple isolation of nodes in random recursive trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信