支持gpu上使用gpu的数据驱动I/O

Sagi Shahar, M. Silberstein
{"title":"支持gpu上使用gpu的数据驱动I/O","authors":"Sagi Shahar, M. Silberstein","doi":"10.1145/2928275.2928276","DOIUrl":null,"url":null,"abstract":"Using discrete GPUs for processing very large datasets is challenging, in particular when an algorithm exhibit unpredictable, data-driven access patterns. In this paper we investigate the utility of GPUfs, a library that provides direct access to files from GPU programs, to implement such algorithms. We analyze the system's bottlenecks, and suggest several modifications to the GPUfs design, including new concurrent hash table for the buffer cache and a highly parallel memory allocator. We also show that by implementing the workload in a warp-centric manner we can improve the performance even further. We evaluate our changes by implementing a real image processing application which creates collages from a dataset of 10 Million images. The enhanced GPUfs design improves the application performance by 5.6× on average over the original GPUfs, and outperforms both 12-core parallel CPU which uses the AVX instruction set, and a standard CUDA-based GPU implementation by up to 2.5× and 3× respectively, while significantly enhancing system programmability and simplifying the application design and implementation.","PeriodicalId":20607,"journal":{"name":"Proceedings of the 9th ACM International on Systems and Storage Conference","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Supporting data-driven I/O on GPUs using GPUfs\",\"authors\":\"Sagi Shahar, M. Silberstein\",\"doi\":\"10.1145/2928275.2928276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using discrete GPUs for processing very large datasets is challenging, in particular when an algorithm exhibit unpredictable, data-driven access patterns. In this paper we investigate the utility of GPUfs, a library that provides direct access to files from GPU programs, to implement such algorithms. We analyze the system's bottlenecks, and suggest several modifications to the GPUfs design, including new concurrent hash table for the buffer cache and a highly parallel memory allocator. We also show that by implementing the workload in a warp-centric manner we can improve the performance even further. We evaluate our changes by implementing a real image processing application which creates collages from a dataset of 10 Million images. The enhanced GPUfs design improves the application performance by 5.6× on average over the original GPUfs, and outperforms both 12-core parallel CPU which uses the AVX instruction set, and a standard CUDA-based GPU implementation by up to 2.5× and 3× respectively, while significantly enhancing system programmability and simplifying the application design and implementation.\",\"PeriodicalId\":20607,\"journal\":{\"name\":\"Proceedings of the 9th ACM International on Systems and Storage Conference\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM International on Systems and Storage Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2928275.2928276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM International on Systems and Storage Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2928275.2928276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

使用离散gpu来处理非常大的数据集是具有挑战性的,特别是当算法表现出不可预测的数据驱动访问模式时。在本文中,我们研究了GPU的效用,一个库,提供了从GPU程序直接访问文件,以实现这些算法。我们分析了系统的瓶颈,并建议对gpu设计进行一些修改,包括为缓冲缓存提供新的并发哈希表和高度并行的内存分配器。我们还展示了,通过以warp为中心的方式实现工作负载,我们可以进一步提高性能。我们通过实现一个真实的图像处理应用程序来评估我们的变化,该应用程序从1000万张图像的数据集中创建拼贴画。增强后的GPU设计使应用性能比原来的GPU平均提高5.6倍,比使用AVX指令集的12核并行CPU和基于cuda的标准GPU分别提高2.5倍和3倍,同时显著增强了系统的可编程性,简化了应用的设计和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supporting data-driven I/O on GPUs using GPUfs
Using discrete GPUs for processing very large datasets is challenging, in particular when an algorithm exhibit unpredictable, data-driven access patterns. In this paper we investigate the utility of GPUfs, a library that provides direct access to files from GPU programs, to implement such algorithms. We analyze the system's bottlenecks, and suggest several modifications to the GPUfs design, including new concurrent hash table for the buffer cache and a highly parallel memory allocator. We also show that by implementing the workload in a warp-centric manner we can improve the performance even further. We evaluate our changes by implementing a real image processing application which creates collages from a dataset of 10 Million images. The enhanced GPUfs design improves the application performance by 5.6× on average over the original GPUfs, and outperforms both 12-core parallel CPU which uses the AVX instruction set, and a standard CUDA-based GPU implementation by up to 2.5× and 3× respectively, while significantly enhancing system programmability and simplifying the application design and implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信