sinh-Gordon方程谱曲线上的归一化微分

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
T. Kappeler, Yannick Widmer
{"title":"sinh-Gordon方程谱曲线上的归一化微分","authors":"T. Kappeler, Yannick Widmer","doi":"10.3934/jgm.2020023","DOIUrl":null,"url":null,"abstract":"The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"22 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On nomalized differentials on spectral curves associated with the sinh-Gordon equation\",\"authors\":\"T. Kappeler, Yannick Widmer\",\"doi\":\"10.3934/jgm.2020023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jgm.2020023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2020023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

环面上与sinh-Gordon方程相关的谱曲线是用方程的Lax对公式中出现的Lax算子的谱来定义的。如果谱是简单的,则它是一个无限格的开放黎曼曲面。在本文中,我们在这条曲线上构造了归一化微分,并推导了它们的零点位置的估计,这是构造角度变量所需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On nomalized differentials on spectral curves associated with the sinh-Gordon equation
The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信