Thomas P Thompson, Julianne Megaw, Stephen A Kelly, Jason Hopps, Brendan F Gilmore
{"title":"盐岩沉积物和其他高盐环境的微生物群落。","authors":"Thomas P Thompson, Julianne Megaw, Stephen A Kelly, Jason Hopps, Brendan F Gilmore","doi":"10.1016/bs.aambs.2022.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>Large regions of Earth's surface are underlain by salt deposits that evaporated from ancient oceans and are populated by extreme halophilic microbes. While the microbiology of ancient evaporites has been well studied, the ecology of halite deposits and more recently formed NaCl \"salticle\" stalactite structures (speleothems) in a Triassic halite mine are less well characterized. The microbiome of Kilroot Salt Mine was profiled using conventional and enhanced culturing techniques. From this, 89 halophilic archaeal isolates from six known genera, and 55 halophilic or halotolerant bacterial isolates from 18 genera were obtained. Culture-independent metagenomic approaches also revealed that culturing techniques were inadvertently biased toward specific taxa, and the need for optimized isolation procedures are required to enhance cultivation diversity. Speleothems formed from saturated brines are unique structures that have the potential to entomb haloarchaea cells for thousands of years within fluid inclusions. The presence of such fluid inclusions, alongside the high abundance of genes related to glycerol metabolism, biofilm formation, and persister cell formation is highly suggestive of an environmental niche that could promote longevity and survivability. Finally, previous studies reporting the discovery of novel biocatalysts from the Kilroot mine microbiome, suggests that this environment may be an untapped source of chemical diversity with high biodiscovery potential.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"120 ","pages":"1-32"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial communities of halite deposits and other hypersaline environments.\",\"authors\":\"Thomas P Thompson, Julianne Megaw, Stephen A Kelly, Jason Hopps, Brendan F Gilmore\",\"doi\":\"10.1016/bs.aambs.2022.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large regions of Earth's surface are underlain by salt deposits that evaporated from ancient oceans and are populated by extreme halophilic microbes. While the microbiology of ancient evaporites has been well studied, the ecology of halite deposits and more recently formed NaCl \\\"salticle\\\" stalactite structures (speleothems) in a Triassic halite mine are less well characterized. The microbiome of Kilroot Salt Mine was profiled using conventional and enhanced culturing techniques. From this, 89 halophilic archaeal isolates from six known genera, and 55 halophilic or halotolerant bacterial isolates from 18 genera were obtained. Culture-independent metagenomic approaches also revealed that culturing techniques were inadvertently biased toward specific taxa, and the need for optimized isolation procedures are required to enhance cultivation diversity. Speleothems formed from saturated brines are unique structures that have the potential to entomb haloarchaea cells for thousands of years within fluid inclusions. The presence of such fluid inclusions, alongside the high abundance of genes related to glycerol metabolism, biofilm formation, and persister cell formation is highly suggestive of an environmental niche that could promote longevity and survivability. Finally, previous studies reporting the discovery of novel biocatalysts from the Kilroot mine microbiome, suggests that this environment may be an untapped source of chemical diversity with high biodiscovery potential.</p>\",\"PeriodicalId\":7298,\"journal\":{\"name\":\"Advances in applied microbiology\",\"volume\":\"120 \",\"pages\":\"1-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aambs.2022.06.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2022.06.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Microbial communities of halite deposits and other hypersaline environments.
Large regions of Earth's surface are underlain by salt deposits that evaporated from ancient oceans and are populated by extreme halophilic microbes. While the microbiology of ancient evaporites has been well studied, the ecology of halite deposits and more recently formed NaCl "salticle" stalactite structures (speleothems) in a Triassic halite mine are less well characterized. The microbiome of Kilroot Salt Mine was profiled using conventional and enhanced culturing techniques. From this, 89 halophilic archaeal isolates from six known genera, and 55 halophilic or halotolerant bacterial isolates from 18 genera were obtained. Culture-independent metagenomic approaches also revealed that culturing techniques were inadvertently biased toward specific taxa, and the need for optimized isolation procedures are required to enhance cultivation diversity. Speleothems formed from saturated brines are unique structures that have the potential to entomb haloarchaea cells for thousands of years within fluid inclusions. The presence of such fluid inclusions, alongside the high abundance of genes related to glycerol metabolism, biofilm formation, and persister cell formation is highly suggestive of an environmental niche that could promote longevity and survivability. Finally, previous studies reporting the discovery of novel biocatalysts from the Kilroot mine microbiome, suggests that this environment may be an untapped source of chemical diversity with high biodiscovery potential.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.