采用准分子激光退火和应变硅作为性能助推器的掺杂剂激活的3D顺序低温顶层器件

A. Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, N. Horiguchi
{"title":"采用准分子激光退火和应变硅作为性能助推器的掺杂剂激活的3D顺序低温顶层器件","authors":"A. Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, N. Horiguchi","doi":"10.1109/VLSITechnology18217.2020.9265026","DOIUrl":null,"url":null,"abstract":"Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $(< 525^{\\circ}\\mathrm{C})$. Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\\mathrm{I}_{\\mathrm{on}}-\\mathrm{I}_{\\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"3D sequential low temperature top tier devices using dopant activation with excimer laser anneal and strained silicon as performance boosters\",\"authors\":\"A. Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, N. Horiguchi\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $(< 525^{\\\\circ}\\\\mathrm{C})$. Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\\\\mathrm{I}_{\\\\mathrm{on}}-\\\\mathrm{I}_{\\\\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"8 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

3D顺序集成中的顶层器件使用低温工艺流程$(< 525^{\circ}\ mathm {C})$进行优化。双轴拉伸应变硅在没有应变松弛的情况下转移,使顶层nmos器件的性能比未应变硅器件提高40-50%,恢复了使用无扩展器件集成时低温加工造成的性能损失。准分子激光退火也被证明在优化的、CMOS兼容的、激光曝光条件下,在硅薄膜器件的扩展中有效地激活n型和p型掺杂剂。激光退火与替代金属栅(RMG)工艺流程和选择性源/漏(SD)外延完全兼容。在整个工艺流程中保持掺杂激活水平,这使得具有激光和脉冲退火的器件具有相似的$\mathrm{I}_{\mathrm{on}}- $ mathrm{I}_{\mathrm{off}}$器件性能。准分子激光退火也受益于由于低掺杂扩散而优于尖峰退火的控制短通道效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D sequential low temperature top tier devices using dopant activation with excimer laser anneal and strained silicon as performance boosters
Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $(< 525^{\circ}\mathrm{C})$. Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\mathrm{I}_{\mathrm{on}}-\mathrm{I}_{\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信