A. Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, N. Horiguchi
{"title":"采用准分子激光退火和应变硅作为性能助推器的掺杂剂激活的3D顺序低温顶层器件","authors":"A. Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, N. Horiguchi","doi":"10.1109/VLSITechnology18217.2020.9265026","DOIUrl":null,"url":null,"abstract":"Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $(< 525^{\\circ}\\mathrm{C})$. Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\\mathrm{I}_{\\mathrm{on}}-\\mathrm{I}_{\\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"3D sequential low temperature top tier devices using dopant activation with excimer laser anneal and strained silicon as performance boosters\",\"authors\":\"A. Vandooren, Z. Wu, N. Parihar, J. Franco, B. Parvais, P. Matagne, H. Debruyn, G. Mannaert, K. Devriendt, L. Teugels, E. Vecchio, D. Radisic, E. Rosseel, A. Hikavyy, B. Chan, N. Waldron, J. Mitard, G. Besnard, A. Alvarez, G. Gaudin, W. Schwarzenbach, I. Radu, B. Nguyen, K. Huet, T. Tabata, F. Mazzamuto, S. Demuynck, J. Boemmels, N. Collaert, N. Horiguchi\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $(< 525^{\\\\circ}\\\\mathrm{C})$. Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\\\\mathrm{I}_{\\\\mathrm{on}}-\\\\mathrm{I}_{\\\\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"8 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D sequential low temperature top tier devices using dopant activation with excimer laser anneal and strained silicon as performance boosters
Top tier devices in a 3D sequential integration are optimized using a low temperature process flow $(< 525^{\circ}\mathrm{C})$. Bi-axial tensile strained silicon is transferred without strain relaxation to boost the top tier nmos device performance by 40-50% over the unstrained silicon devices, recovering the performance loss from the low temperature processing when using extension-less device integration. Excimer laser anneal is also shown to effectively activate both n-type and p-type dopants in the extension of thin silicon film devices using optimized, CMOS compatible, laser exposure conditions. Laser anneal is fully compatible with a replacement metal gate (RMG) process flow and with selective source/drain (SD) epitaxy. The dopant activation level is preserved during the entire process flow which results in similar $\mathrm{I}_{\mathrm{on}}-\mathrm{I}_{\mathrm{off}}$ device performance for devices with laser and spike anneals. Excimer laser anneal benefits also from improved control short channel effects over spike annealing due to low dopant diffusion.