{"title":"七氟醚通过调控Circ_0000423/miR-525-5p/SGPP1网络抑制结直肠癌的增殖、迁移和侵袭","authors":"Xiaofang Kang, Xiaocong Li, Yanli Li","doi":"10.1007/s12195-021-00717-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sevoflurane (SEV) has been shown to inhibit the malignant progression in many cancers, including colorectal cancer (CRC). However, it is not clear whether SEV regulates the progression of CRC by mediating the circular RNA (circRNA) axis.</p><p><strong>Methods: </strong>Different concentrations of SEV were used to treat CRC cells. Cell proliferation, migration and invasion were determined by cell counting kit 8 assay, colony formation assay and transwell assay. The expression of circ_0000423, microRNA (miR)-525-5p and sphingosine-1-phosphate phosphatase 1 (SGPP1) mRNA was measured by quantitative real-time PCR. Cell apoptosis was assessed using flow cytometry, and protein expression was measured by western blot analysis. Dual-luciferase reporter assay and RIP assay were performed to confirm the interactions among circ_0000423, miR-525-5p and SGPP1. Animal experiments were performed to explore the effect of SEV and circ_0000423 on CRC tumorigenesis.</p><p><strong>Results: </strong>SEV could inhibit CRC cell proliferation, migration and invasion. Circ_0000423 was upregulated in CRC and its expression could be reduced by SEV. Overexpressed circ_0000423 reversed the inhibitory effect of SEV on CRC cell proliferation, migration and invasion and the promotion effect on cell apoptosis. MiR-525-5p could be sponged by circ_0000423, and its overexpression also abolished the regulation of circ_0000423 on the progression of SEV-treated CRC cells. In addition, SGPP1 was confirmed to be a target of miR-525-5p, and its expression was positively regulated by circ_0000423. MiR-525-5p inhibitor promoted CRC cell progression under the treatment of SEV, while these effects could be overturned by SGPP1 silencing. Furthermore, the inhibition effect of SEV on CRC tumorigenesis also could be abolished by overexpressing circ_0000423.</p><p><strong>Conclusion: </strong>Our results showed that SEV inhibited CRC progression through the regulation of circ_0000423/miR-525-5p/SGPP1 axis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-021-00717-5.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"15 2","pages":"219-230"},"PeriodicalIF":2.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938590/pdf/12195_2021_Article_717.pdf","citationCount":"2","resultStr":"{\"title\":\"Sevoflurane Suppresses the Proliferation, Migration and Invasion of Colorectal Cancer Through Regulating Circ_0000423/miR-525-5p/SGPP1 Network.\",\"authors\":\"Xiaofang Kang, Xiaocong Li, Yanli Li\",\"doi\":\"10.1007/s12195-021-00717-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Sevoflurane (SEV) has been shown to inhibit the malignant progression in many cancers, including colorectal cancer (CRC). However, it is not clear whether SEV regulates the progression of CRC by mediating the circular RNA (circRNA) axis.</p><p><strong>Methods: </strong>Different concentrations of SEV were used to treat CRC cells. Cell proliferation, migration and invasion were determined by cell counting kit 8 assay, colony formation assay and transwell assay. The expression of circ_0000423, microRNA (miR)-525-5p and sphingosine-1-phosphate phosphatase 1 (SGPP1) mRNA was measured by quantitative real-time PCR. Cell apoptosis was assessed using flow cytometry, and protein expression was measured by western blot analysis. Dual-luciferase reporter assay and RIP assay were performed to confirm the interactions among circ_0000423, miR-525-5p and SGPP1. Animal experiments were performed to explore the effect of SEV and circ_0000423 on CRC tumorigenesis.</p><p><strong>Results: </strong>SEV could inhibit CRC cell proliferation, migration and invasion. Circ_0000423 was upregulated in CRC and its expression could be reduced by SEV. Overexpressed circ_0000423 reversed the inhibitory effect of SEV on CRC cell proliferation, migration and invasion and the promotion effect on cell apoptosis. MiR-525-5p could be sponged by circ_0000423, and its overexpression also abolished the regulation of circ_0000423 on the progression of SEV-treated CRC cells. In addition, SGPP1 was confirmed to be a target of miR-525-5p, and its expression was positively regulated by circ_0000423. MiR-525-5p inhibitor promoted CRC cell progression under the treatment of SEV, while these effects could be overturned by SGPP1 silencing. Furthermore, the inhibition effect of SEV on CRC tumorigenesis also could be abolished by overexpressing circ_0000423.</p><p><strong>Conclusion: </strong>Our results showed that SEV inhibited CRC progression through the regulation of circ_0000423/miR-525-5p/SGPP1 axis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-021-00717-5.</p>\",\"PeriodicalId\":9687,\"journal\":{\"name\":\"Cellular and molecular bioengineering\",\"volume\":\"15 2\",\"pages\":\"219-230\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8938590/pdf/12195_2021_Article_717.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12195-021-00717-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-021-00717-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Sevoflurane Suppresses the Proliferation, Migration and Invasion of Colorectal Cancer Through Regulating Circ_0000423/miR-525-5p/SGPP1 Network.
Introduction: Sevoflurane (SEV) has been shown to inhibit the malignant progression in many cancers, including colorectal cancer (CRC). However, it is not clear whether SEV regulates the progression of CRC by mediating the circular RNA (circRNA) axis.
Methods: Different concentrations of SEV were used to treat CRC cells. Cell proliferation, migration and invasion were determined by cell counting kit 8 assay, colony formation assay and transwell assay. The expression of circ_0000423, microRNA (miR)-525-5p and sphingosine-1-phosphate phosphatase 1 (SGPP1) mRNA was measured by quantitative real-time PCR. Cell apoptosis was assessed using flow cytometry, and protein expression was measured by western blot analysis. Dual-luciferase reporter assay and RIP assay were performed to confirm the interactions among circ_0000423, miR-525-5p and SGPP1. Animal experiments were performed to explore the effect of SEV and circ_0000423 on CRC tumorigenesis.
Results: SEV could inhibit CRC cell proliferation, migration and invasion. Circ_0000423 was upregulated in CRC and its expression could be reduced by SEV. Overexpressed circ_0000423 reversed the inhibitory effect of SEV on CRC cell proliferation, migration and invasion and the promotion effect on cell apoptosis. MiR-525-5p could be sponged by circ_0000423, and its overexpression also abolished the regulation of circ_0000423 on the progression of SEV-treated CRC cells. In addition, SGPP1 was confirmed to be a target of miR-525-5p, and its expression was positively regulated by circ_0000423. MiR-525-5p inhibitor promoted CRC cell progression under the treatment of SEV, while these effects could be overturned by SGPP1 silencing. Furthermore, the inhibition effect of SEV on CRC tumorigenesis also could be abolished by overexpressing circ_0000423.
Conclusion: Our results showed that SEV inhibited CRC progression through the regulation of circ_0000423/miR-525-5p/SGPP1 axis.
Supplementary information: The online version contains supplementary material available at 10.1007/s12195-021-00717-5.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.