M. H. van der Veen, Y. Barbarin, B. Vereecke, Masahito Sugiura, Y. Kashiwagi, D. Cott, C. Huyghebaert, Z. Tokei
{"title":"碳纳米管触点与Cu damascene顶部金属化的电学改进","authors":"M. H. van der Veen, Y. Barbarin, B. Vereecke, Masahito Sugiura, Y. Kashiwagi, D. Cott, C. Huyghebaert, Z. Tokei","doi":"10.1109/IITC.2013.6615601","DOIUrl":null,"url":null,"abstract":"We discuss the improvement in the electrical characterization and the performance of 150 nm diameter contacts filled with carbon nanotubes (CNT) and a Cu damascene top metal on 200mm wafers. The excellent agreement between the yield curves for the parallel and single contacts shows that a reliable electrical characterization is obtained. We demonstrate that integration changes improved the resistivity of the CNT contact significantly by reducing it from 11.8·10<sup>3</sup> μΩ·cm down to 5.1·10<sup>3</sup> μΩ·cm. Finally, a length scaling of the CNT contacts was used to find the individual contributors to the lowering of the single CNT contact resistance.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Electrical improvement of CNT contacts with Cu damascene top metallization\",\"authors\":\"M. H. van der Veen, Y. Barbarin, B. Vereecke, Masahito Sugiura, Y. Kashiwagi, D. Cott, C. Huyghebaert, Z. Tokei\",\"doi\":\"10.1109/IITC.2013.6615601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the improvement in the electrical characterization and the performance of 150 nm diameter contacts filled with carbon nanotubes (CNT) and a Cu damascene top metal on 200mm wafers. The excellent agreement between the yield curves for the parallel and single contacts shows that a reliable electrical characterization is obtained. We demonstrate that integration changes improved the resistivity of the CNT contact significantly by reducing it from 11.8·10<sup>3</sup> μΩ·cm down to 5.1·10<sup>3</sup> μΩ·cm. Finally, a length scaling of the CNT contacts was used to find the individual contributors to the lowering of the single CNT contact resistance.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"1 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical improvement of CNT contacts with Cu damascene top metallization
We discuss the improvement in the electrical characterization and the performance of 150 nm diameter contacts filled with carbon nanotubes (CNT) and a Cu damascene top metal on 200mm wafers. The excellent agreement between the yield curves for the parallel and single contacts shows that a reliable electrical characterization is obtained. We demonstrate that integration changes improved the resistivity of the CNT contact significantly by reducing it from 11.8·103 μΩ·cm down to 5.1·103 μΩ·cm. Finally, a length scaling of the CNT contacts was used to find the individual contributors to the lowering of the single CNT contact resistance.