Francisco Carrau, Eduardo Dellacassa, Eduardo Boido, Karina Medina, Maria Jose Valera, Laura Fariña, Gabriel Perez, Valentina Martin, Fernando Alvarez-Valin, Lucia Balestrazzi
{"title":"汉森菌的生物学和生理学:食物发酵的代谢多样性和增加风味的复杂性。","authors":"Francisco Carrau, Eduardo Dellacassa, Eduardo Boido, Karina Medina, Maria Jose Valera, Laura Fariña, Gabriel Perez, Valentina Martin, Fernando Alvarez-Valin, Lucia Balestrazzi","doi":"10.1093/femsyr/foad010","DOIUrl":null,"url":null,"abstract":"<p><p>Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biology and physiology of Hanseniaspora vineae: metabolic diversity and increase flavour complexity for food fermentation.\",\"authors\":\"Francisco Carrau, Eduardo Dellacassa, Eduardo Boido, Karina Medina, Maria Jose Valera, Laura Fariña, Gabriel Perez, Valentina Martin, Fernando Alvarez-Valin, Lucia Balestrazzi\",\"doi\":\"10.1093/femsyr/foad010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\"23 \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biology and physiology of Hanseniaspora vineae: metabolic diversity and increase flavour complexity for food fermentation.
Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.