{"title":"利用低通滤波m序列信号双边控制系统识别人与环境阻抗","authors":"T. Okano, T. Ishikawa, T. Nozaki, K. Ohnishi","doi":"10.1109/IECON.2017.8216900","DOIUrl":null,"url":null,"abstract":"This paper aims to develop the method for identifying human and environmental impedances with information in the frequency domain by using bilateral control system. In the conventional method, a sinusoidal wave is added to the common mode of bilateral control system, however, this method cannot extract haptic information in frequency domain. Human impedances are assumed to change every moment, and the identification method of impedance is strongly desired to develop. In this paper, low-pass filtered M-sequence signal is added to the bilateral control system for identifying both human and environmental impedances with information in the frequency domain. Experiments were conducted for verifying the effectiveness of the proposed method.","PeriodicalId":13098,"journal":{"name":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","volume":"35 1","pages":"5203-5208"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of human and environmental impedances by using bilateral control system with low-pass filtered M-sequence signal\",\"authors\":\"T. Okano, T. Ishikawa, T. Nozaki, K. Ohnishi\",\"doi\":\"10.1109/IECON.2017.8216900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop the method for identifying human and environmental impedances with information in the frequency domain by using bilateral control system. In the conventional method, a sinusoidal wave is added to the common mode of bilateral control system, however, this method cannot extract haptic information in frequency domain. Human impedances are assumed to change every moment, and the identification method of impedance is strongly desired to develop. In this paper, low-pass filtered M-sequence signal is added to the bilateral control system for identifying both human and environmental impedances with information in the frequency domain. Experiments were conducted for verifying the effectiveness of the proposed method.\",\"PeriodicalId\":13098,\"journal\":{\"name\":\"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"35 1\",\"pages\":\"5203-5208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2017.8216900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2017.8216900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of human and environmental impedances by using bilateral control system with low-pass filtered M-sequence signal
This paper aims to develop the method for identifying human and environmental impedances with information in the frequency domain by using bilateral control system. In the conventional method, a sinusoidal wave is added to the common mode of bilateral control system, however, this method cannot extract haptic information in frequency domain. Human impedances are assumed to change every moment, and the identification method of impedance is strongly desired to develop. In this paper, low-pass filtered M-sequence signal is added to the bilateral control system for identifying both human and environmental impedances with information in the frequency domain. Experiments were conducted for verifying the effectiveness of the proposed method.