为什么要研究裂叶植物

C. Raper, T. Fowler
{"title":"为什么要研究裂叶植物","authors":"C. Raper, T. Fowler","doi":"10.4148/1941-4765.1142","DOIUrl":null,"url":null,"abstract":"The process of mating, fertilization, fruiting, meiosis and spore formation is regulated by two kinds of genetic factors residing at the A and B mating-type loci, earlier called incompatibility factors A and B. Over the eight decades since Kniep's discovery, revelations about the genetic, biochemical and molecular underpinnings of this bizarre system have made an exciting story (see list of selected references, below). While other interesting aspects of Schizophyllum have been explored, notably the hydrophobins of Wessels and associates (reviewed in W essels, 2000), a principal focus over the years has been on mating compatibility and sexual development. Although Schizophyllum commune 's main role in nature is to recycle carbon by breaking down celluose and xylans in fallen wood (Clarke and Yaguchi, 1986; Bray and Clarke, 1995), it has been documented occasionally as a pathogen in fruit orchards (Latham, 1970; Oprea, et al, 1995) and also in immunologically compromised humans (Buzina et al, 2001).","PeriodicalId":12490,"journal":{"name":"Fungal Genetics Reports","volume":"63 1.2 1","pages":"30-36"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Why Study Schizophyllum\",\"authors\":\"C. Raper, T. Fowler\",\"doi\":\"10.4148/1941-4765.1142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of mating, fertilization, fruiting, meiosis and spore formation is regulated by two kinds of genetic factors residing at the A and B mating-type loci, earlier called incompatibility factors A and B. Over the eight decades since Kniep's discovery, revelations about the genetic, biochemical and molecular underpinnings of this bizarre system have made an exciting story (see list of selected references, below). While other interesting aspects of Schizophyllum have been explored, notably the hydrophobins of Wessels and associates (reviewed in W essels, 2000), a principal focus over the years has been on mating compatibility and sexual development. Although Schizophyllum commune 's main role in nature is to recycle carbon by breaking down celluose and xylans in fallen wood (Clarke and Yaguchi, 1986; Bray and Clarke, 1995), it has been documented occasionally as a pathogen in fruit orchards (Latham, 1970; Oprea, et al, 1995) and also in immunologically compromised humans (Buzina et al, 2001).\",\"PeriodicalId\":12490,\"journal\":{\"name\":\"Fungal Genetics Reports\",\"volume\":\"63 1.2 1\",\"pages\":\"30-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4148/1941-4765.1142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4148/1941-4765.1142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

交配、受精、结果、减数分裂和孢子形成的过程是由位于A和B交配型位点的两种遗传因子调控的,这两种遗传因子以前被称为不亲和因子A和B。在Kniep发现后的80年里,关于这一奇异系统的遗传、生化和分子基础的揭示创造了一个令人兴奋的故事(见下面的精选参考文献列表)。虽然裂叶植物的其他有趣的方面已经被探索过,特别是Wessels及其同伴的疏水蛋白(在Wessels, 2000中进行了综述),但多年来的主要焦点一直是交配相容性和性发育。尽管裂叶菌群落在自然界中的主要作用是通过分解落木中的纤维素和木质素来回收碳(Clarke and Yaguchi, 1986;Bray和Clarke, 1995),它偶尔被记录为果园中的病原体(Latham, 1970;Oprea等人,1995年)以及免疫功能受损的人(Buzina等人,2001年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why Study Schizophyllum
The process of mating, fertilization, fruiting, meiosis and spore formation is regulated by two kinds of genetic factors residing at the A and B mating-type loci, earlier called incompatibility factors A and B. Over the eight decades since Kniep's discovery, revelations about the genetic, biochemical and molecular underpinnings of this bizarre system have made an exciting story (see list of selected references, below). While other interesting aspects of Schizophyllum have been explored, notably the hydrophobins of Wessels and associates (reviewed in W essels, 2000), a principal focus over the years has been on mating compatibility and sexual development. Although Schizophyllum commune 's main role in nature is to recycle carbon by breaking down celluose and xylans in fallen wood (Clarke and Yaguchi, 1986; Bray and Clarke, 1995), it has been documented occasionally as a pathogen in fruit orchards (Latham, 1970; Oprea, et al, 1995) and also in immunologically compromised humans (Buzina et al, 2001).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信