{"title":"基于模型的递归划分与偏差减少估计的集成:一个评估奥利弗的四个因素对篮球比赛获胜概率影响的案例研究","authors":"Manlio Migliorati, Marica Manisera, Paola Zuccolotto","doi":"10.1007/s10182-022-00456-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this contribution, we investigate the importance of Oliver’s Four Factors, proposed in the literature to identify a basketball team’s strengths and weaknesses in terms of shooting, turnovers, rebounding and free throws, as success drivers of a basketball game. In order to investigate the role of each factor in the success of a team in a match, we applied the MOdel-Based recursive partitioning (MOB) algorithm to real data concerning 19,138 matches of 16 National Basketball Association (NBA) regular seasons (from 2004–2005 to 2019–2020). MOB, instead of fitting one global Generalized Linear Model (GLM) to all observations, partitions the observations according to selected partitioning variables and estimates several ad hoc local GLMs for subgroups of observations. The manuscript’s aim is twofold: (1) in order to deal with (quasi) separation problems leading to convergence problems in the numerical solution of Maximum Likelihood (ML) estimation in MOB, we propose a methodological extension of GLM-based recursive partitioning from standard ML estimation to bias-reduced (BR) estimation; and (2) we apply the BR-based GLM trees to basketball analytics. The results show models very easy to interpret that can provide useful support to coaching staff’s decisions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-022-00456-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Integration of model-based recursive partitioning with bias reduction estimation: a case study assessing the impact of Oliver’s four factors on the probability of winning a basketball game\",\"authors\":\"Manlio Migliorati, Marica Manisera, Paola Zuccolotto\",\"doi\":\"10.1007/s10182-022-00456-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this contribution, we investigate the importance of Oliver’s Four Factors, proposed in the literature to identify a basketball team’s strengths and weaknesses in terms of shooting, turnovers, rebounding and free throws, as success drivers of a basketball game. In order to investigate the role of each factor in the success of a team in a match, we applied the MOdel-Based recursive partitioning (MOB) algorithm to real data concerning 19,138 matches of 16 National Basketball Association (NBA) regular seasons (from 2004–2005 to 2019–2020). MOB, instead of fitting one global Generalized Linear Model (GLM) to all observations, partitions the observations according to selected partitioning variables and estimates several ad hoc local GLMs for subgroups of observations. The manuscript’s aim is twofold: (1) in order to deal with (quasi) separation problems leading to convergence problems in the numerical solution of Maximum Likelihood (ML) estimation in MOB, we propose a methodological extension of GLM-based recursive partitioning from standard ML estimation to bias-reduced (BR) estimation; and (2) we apply the BR-based GLM trees to basketball analytics. The results show models very easy to interpret that can provide useful support to coaching staff’s decisions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10182-022-00456-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10182-022-00456-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-022-00456-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integration of model-based recursive partitioning with bias reduction estimation: a case study assessing the impact of Oliver’s four factors on the probability of winning a basketball game
In this contribution, we investigate the importance of Oliver’s Four Factors, proposed in the literature to identify a basketball team’s strengths and weaknesses in terms of shooting, turnovers, rebounding and free throws, as success drivers of a basketball game. In order to investigate the role of each factor in the success of a team in a match, we applied the MOdel-Based recursive partitioning (MOB) algorithm to real data concerning 19,138 matches of 16 National Basketball Association (NBA) regular seasons (from 2004–2005 to 2019–2020). MOB, instead of fitting one global Generalized Linear Model (GLM) to all observations, partitions the observations according to selected partitioning variables and estimates several ad hoc local GLMs for subgroups of observations. The manuscript’s aim is twofold: (1) in order to deal with (quasi) separation problems leading to convergence problems in the numerical solution of Maximum Likelihood (ML) estimation in MOB, we propose a methodological extension of GLM-based recursive partitioning from standard ML estimation to bias-reduced (BR) estimation; and (2) we apply the BR-based GLM trees to basketball analytics. The results show models very easy to interpret that can provide useful support to coaching staff’s decisions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.