M. V. van Gent, Sylvia N. Kłodzińska, Maureen Severin, Muhanad Ali, Bjorn R van Doodewaerd, E. Bos, R. Koning, J. Drijfhout, H. M. Nielsen, P. Nibbering
{"title":"透明质酸纳米凝胶包封提高了蛇抗菌素Ab-Cath的选择性指数。","authors":"M. V. van Gent, Sylvia N. Kłodzińska, Maureen Severin, Muhanad Ali, Bjorn R van Doodewaerd, E. Bos, R. Koning, J. Drijfhout, H. M. Nielsen, P. Nibbering","doi":"10.2139/ssrn.4375055","DOIUrl":null,"url":null,"abstract":"The antimicrobial peptide Ab-Cath, is a promising candidate for development as treatment for antimicrobial resistant (AMR) bacterial infections. Future clinical use is hampered by Ab-Cath's cationic peptidic nature and limited therapeutic window. Here, we evaluated hyaluronic acid-based nanogels for encapsulation of Ab-Cath to circumvent these limitations. Using microfluidics, monodispersed anionic nanogels of 156 – 232 nm encapsulating >99 % Ab-Cath were prepared. Unprecedented, lyophilization using polyvinyl alcohol and dextran-40 provided Ab-Cath nanogel protection and allowed easy dose adjustment. Lyophilized and redispersed Ab-Cath nanogels were as effective as Ab-Cath solution in killing AMR Staphylococcus aureus , Acinetobacter baumannii and Escherichia coli in biological fluids, and in reducing S. aureus and A. baumannii biofilms. Importantly, encapsulation of Ab-Cath in nanogels reduced Ab-Cath's cytotoxic effects on human fibroblasts by ≥ 10-fold. Moreover, cutaneous application of Ab-Cath nanogels eliminated bacteria colonizing 3D human skin. These findings affirm the use of nanogels to increase the selectivity index of antimicrobial peptides.","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Encapsulation into hyaluronic acid-based nanogels improves the selectivity index of the snake cathelicidin Ab-Cath.\",\"authors\":\"M. V. van Gent, Sylvia N. Kłodzińska, Maureen Severin, Muhanad Ali, Bjorn R van Doodewaerd, E. Bos, R. Koning, J. Drijfhout, H. M. Nielsen, P. Nibbering\",\"doi\":\"10.2139/ssrn.4375055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The antimicrobial peptide Ab-Cath, is a promising candidate for development as treatment for antimicrobial resistant (AMR) bacterial infections. Future clinical use is hampered by Ab-Cath's cationic peptidic nature and limited therapeutic window. Here, we evaluated hyaluronic acid-based nanogels for encapsulation of Ab-Cath to circumvent these limitations. Using microfluidics, monodispersed anionic nanogels of 156 – 232 nm encapsulating >99 % Ab-Cath were prepared. Unprecedented, lyophilization using polyvinyl alcohol and dextran-40 provided Ab-Cath nanogel protection and allowed easy dose adjustment. Lyophilized and redispersed Ab-Cath nanogels were as effective as Ab-Cath solution in killing AMR Staphylococcus aureus , Acinetobacter baumannii and Escherichia coli in biological fluids, and in reducing S. aureus and A. baumannii biofilms. Importantly, encapsulation of Ab-Cath in nanogels reduced Ab-Cath's cytotoxic effects on human fibroblasts by ≥ 10-fold. Moreover, cutaneous application of Ab-Cath nanogels eliminated bacteria colonizing 3D human skin. These findings affirm the use of nanogels to increase the selectivity index of antimicrobial peptides.\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4375055\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2139/ssrn.4375055","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Encapsulation into hyaluronic acid-based nanogels improves the selectivity index of the snake cathelicidin Ab-Cath.
The antimicrobial peptide Ab-Cath, is a promising candidate for development as treatment for antimicrobial resistant (AMR) bacterial infections. Future clinical use is hampered by Ab-Cath's cationic peptidic nature and limited therapeutic window. Here, we evaluated hyaluronic acid-based nanogels for encapsulation of Ab-Cath to circumvent these limitations. Using microfluidics, monodispersed anionic nanogels of 156 – 232 nm encapsulating >99 % Ab-Cath were prepared. Unprecedented, lyophilization using polyvinyl alcohol and dextran-40 provided Ab-Cath nanogel protection and allowed easy dose adjustment. Lyophilized and redispersed Ab-Cath nanogels were as effective as Ab-Cath solution in killing AMR Staphylococcus aureus , Acinetobacter baumannii and Escherichia coli in biological fluids, and in reducing S. aureus and A. baumannii biofilms. Importantly, encapsulation of Ab-Cath in nanogels reduced Ab-Cath's cytotoxic effects on human fibroblasts by ≥ 10-fold. Moreover, cutaneous application of Ab-Cath nanogels eliminated bacteria colonizing 3D human skin. These findings affirm the use of nanogels to increase the selectivity index of antimicrobial peptides.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.