超高真空条件下H-Si (111)1 × 1表面的二阶非线性光学显微镜

Y. Miyauchi
{"title":"超高真空条件下H-Si (111)1 × 1表面的二阶非线性光学显微镜","authors":"Y. Miyauchi","doi":"10.1155/2012/576547","DOIUrl":null,"url":null,"abstract":"This paper reviews the use of optical sum frequency generation (SFG) and second harmonic generation (SHG) microscopy under ultra-high vacuum (UHV) conditions to observe the dynamics of a hydrogen terminated Si(111)1 × 1 surface. First, we took SFG and SHG microscopic images of the surface after IR light pulse irradiation and found that the SHG and nonresonant SFG signals were enhanced, probably due to the formation of dangling bonds after hydrogen desorption. Second, we observed time-resolved SFG intensity images of a H–Si(111)1 × 1 surface. After visible pump light irradiation, the nonresonant SFG signal increased at probe delay time 0 ps and then decreased over a life time of 565 ps. The resonant SFG signal reduced dramatically at 0 ps and then recovered with an anisotropic line shape over a life time of 305 ps. The areas of modulated SFG signals at delay time 277 ps were expanded with an anisotropic aspect. Finally, we observed SFG intensity images of hydrogen deficiency on a Si(111)1 × 1 surface as a function of temperature. These images of the H–Si(111) surface, taken with a spatial resolution of 5 μm at several temperatures from 572 to 744 K, showed that the hydrogen desorbs homogeneously.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"51 1 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Second-Order Nonlinear Optical Microscopy of a H–Si(111)1 × 1 Surface in Ultra-High Vacuum Conditions\",\"authors\":\"Y. Miyauchi\",\"doi\":\"10.1155/2012/576547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews the use of optical sum frequency generation (SFG) and second harmonic generation (SHG) microscopy under ultra-high vacuum (UHV) conditions to observe the dynamics of a hydrogen terminated Si(111)1 × 1 surface. First, we took SFG and SHG microscopic images of the surface after IR light pulse irradiation and found that the SHG and nonresonant SFG signals were enhanced, probably due to the formation of dangling bonds after hydrogen desorption. Second, we observed time-resolved SFG intensity images of a H–Si(111)1 × 1 surface. After visible pump light irradiation, the nonresonant SFG signal increased at probe delay time 0 ps and then decreased over a life time of 565 ps. The resonant SFG signal reduced dramatically at 0 ps and then recovered with an anisotropic line shape over a life time of 305 ps. The areas of modulated SFG signals at delay time 277 ps were expanded with an anisotropic aspect. Finally, we observed SFG intensity images of hydrogen deficiency on a Si(111)1 × 1 surface as a function of temperature. These images of the H–Si(111) surface, taken with a spatial resolution of 5 μm at several temperatures from 572 to 744 K, showed that the hydrogen desorbs homogeneously.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"51 1 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/576547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/576547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文综述了在超高真空(UHV)条件下使用光学和频发生(SFG)和二次谐波发生(SHG)显微镜观察端氢Si(111)1 × 1表面动力学的方法。首先,我们对红外光脉冲照射后的表面进行了SFG和SHG的显微图像,发现SHG和非共振SFG信号增强,可能是由于氢解吸后形成了悬空键。其次,我们观察了H-Si (111)1 × 1表面的时间分辨SFG强度图像。在可见泵浦光照射下,非谐振SFG信号在探针延迟时间为0 ps时增加,然后在565 ps的寿命时间内下降。谐振SFG信号在0 ps时急剧减小,然后在305ps的寿命时间内恢复为各向异性线形。在延迟时间为277ps时,调制SFG信号的区域呈各向异性扩展。最后,我们观察了Si(111)1 × 1表面缺氢的SFG强度图像与温度的关系。在572 ~ 744 K的温度范围内,以5 μm的空间分辨率拍摄了H-Si(111)表面的图像,结果表明氢的解吸是均匀的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second-Order Nonlinear Optical Microscopy of a H–Si(111)1 × 1 Surface in Ultra-High Vacuum Conditions
This paper reviews the use of optical sum frequency generation (SFG) and second harmonic generation (SHG) microscopy under ultra-high vacuum (UHV) conditions to observe the dynamics of a hydrogen terminated Si(111)1 × 1 surface. First, we took SFG and SHG microscopic images of the surface after IR light pulse irradiation and found that the SHG and nonresonant SFG signals were enhanced, probably due to the formation of dangling bonds after hydrogen desorption. Second, we observed time-resolved SFG intensity images of a H–Si(111)1 × 1 surface. After visible pump light irradiation, the nonresonant SFG signal increased at probe delay time 0 ps and then decreased over a life time of 565 ps. The resonant SFG signal reduced dramatically at 0 ps and then recovered with an anisotropic line shape over a life time of 305 ps. The areas of modulated SFG signals at delay time 277 ps were expanded with an anisotropic aspect. Finally, we observed SFG intensity images of hydrogen deficiency on a Si(111)1 × 1 surface as a function of temperature. These images of the H–Si(111) surface, taken with a spatial resolution of 5 μm at several temperatures from 572 to 744 K, showed that the hydrogen desorbs homogeneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信