{"title":"关于任意群中的小三倍或小交替的有限集","authors":"G. Conant","doi":"10.1017/S0963548320000176","DOIUrl":null,"url":null,"abstract":"Abstract We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A 3| ≤ O(|A|), or small alternation, |AA −1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"44 1","pages":"807 - 829"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On finite sets of small tripling or small alternation in arbitrary groups\",\"authors\":\"G. Conant\",\"doi\":\"10.1017/S0963548320000176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A 3| ≤ O(|A|), or small alternation, |AA −1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"44 1\",\"pages\":\"807 - 829\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On finite sets of small tripling or small alternation in arbitrary groups
Abstract We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A 3| ≤ O(|A|), or small alternation, |AA −1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.