关于任意群中的小三倍或小交替的有限集

G. Conant
{"title":"关于任意群中的小三倍或小交替的有限集","authors":"G. Conant","doi":"10.1017/S0963548320000176","DOIUrl":null,"url":null,"abstract":"Abstract We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A 3| ≤ O(|A|), or small alternation, |AA −1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"44 1","pages":"807 - 829"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On finite sets of small tripling or small alternation in arbitrary groups\",\"authors\":\"G. Conant\",\"doi\":\"10.1017/S0963548320000176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A 3| ≤ O(|A|), or small alternation, |AA −1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":\"44 1\",\"pages\":\"807 - 829\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

摘要证明了具有小三重、| a3 |≤O(|A|)或小交替、|AA−1A|≤O(|A|)的群的有限子集的bogolyubov - ruzsa型结果。作为应用,我们得到了任意有限群中密集集合的Bogolyubov引理的一个定性模拟,以及有限指数群中有界vc维集合的一个定量算术正则引理。后者的结果推广了阿隆、福克斯和赵的阿贝尔情况,并给出了作者皮莱和特里先前工作的定量版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finite sets of small tripling or small alternation in arbitrary groups
Abstract We prove Bogolyubov–Ruzsa-type results for finite subsets of groups with small tripling, |A 3| ≤ O(|A|), or small alternation, |AA −1A| ≤ O(|A|). As applications, we obtain a qualitative analogue of Bogolyubov’s lemma for dense sets in arbitrary finite groups, as well as a quantitative arithmetic regularity lemma for sets of bounded VC-dimension in finite groups of bounded exponent. The latter result generalizes the abelian case, due to Alon, Fox and Zhao, and gives a quantitative version of previous work of the author, Pillay and Terry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信