{"title":"使用合成图像学习不变表示用于目标检测","authors":"Ning Jiang, Jinglong Fang, Yanli Shao","doi":"10.2139/ssrn.4033177","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed a rapid advance in training and testing synthetic data through deep learning networks for the annotation of synthetic data can be automatically marked. However, domain discrepancy still exists between synthetic data and real data. In this paper, we address the domain discrepancy issue from three aspects: 1) We design a synthetic image generator with automatically labeled based on 3d scenes. 2) A novel adversarial domain adaptation model is proposed to learn robust intermediate representation free of distractors to improve the transfer performance. 3) We construct a distractor-invariant network and adopt the sample transferability strategy on global-local levels respectively to mitigate the cross-domain gap. Additional exploratory experiments demonstrate that the proposed model achieves large performance margins, which show significant advance over the other state-of-the-art models, performing a promotion of 10%–15% mAP on various domain adaptation scenarios.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"14 1","pages":"13-25"},"PeriodicalIF":1.4000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning invariant representation using synthetic imagery for object detection\",\"authors\":\"Ning Jiang, Jinglong Fang, Yanli Shao\",\"doi\":\"10.2139/ssrn.4033177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed a rapid advance in training and testing synthetic data through deep learning networks for the annotation of synthetic data can be automatically marked. However, domain discrepancy still exists between synthetic data and real data. In this paper, we address the domain discrepancy issue from three aspects: 1) We design a synthetic image generator with automatically labeled based on 3d scenes. 2) A novel adversarial domain adaptation model is proposed to learn robust intermediate representation free of distractors to improve the transfer performance. 3) We construct a distractor-invariant network and adopt the sample transferability strategy on global-local levels respectively to mitigate the cross-domain gap. Additional exploratory experiments demonstrate that the proposed model achieves large performance margins, which show significant advance over the other state-of-the-art models, performing a promotion of 10%–15% mAP on various domain adaptation scenarios.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"14 1\",\"pages\":\"13-25\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4033177\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2139/ssrn.4033177","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning invariant representation using synthetic imagery for object detection
Recent years have witnessed a rapid advance in training and testing synthetic data through deep learning networks for the annotation of synthetic data can be automatically marked. However, domain discrepancy still exists between synthetic data and real data. In this paper, we address the domain discrepancy issue from three aspects: 1) We design a synthetic image generator with automatically labeled based on 3d scenes. 2) A novel adversarial domain adaptation model is proposed to learn robust intermediate representation free of distractors to improve the transfer performance. 3) We construct a distractor-invariant network and adopt the sample transferability strategy on global-local levels respectively to mitigate the cross-domain gap. Additional exploratory experiments demonstrate that the proposed model achieves large performance margins, which show significant advance over the other state-of-the-art models, performing a promotion of 10%–15% mAP on various domain adaptation scenarios.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.