S. K. Mishra, Saket Sinha, Ashutosh Kumar Singh, P. Upadhyay, Diya Kalra, P. Kumar, K. Tiwari, R. Singh, R. Singh, Arvind Kumar, Alok M. Tripathi
{"title":"藤茎银纳米颗粒的绿色合成、表征及应用","authors":"S. K. Mishra, Saket Sinha, Ashutosh Kumar Singh, P. Upadhyay, Diya Kalra, P. Kumar, K. Tiwari, R. Singh, R. Singh, Arvind Kumar, Alok M. Tripathi","doi":"10.21203/rs.3.rs-944036/v1","DOIUrl":null,"url":null,"abstract":"Purpose Green nanotechnology as a field has emerged and gained popularity amongst biologists due to its cost-effective and environment-friendly advancements. The most preferred is the biological method which involves plants and their extracts. Methods The silver nanoparticles were synthesized by a sunlight-driven aqueous extract (AE) of whole plant powder of Ascophyllum nodosum . Advanced techniques like high-resolution scanning electron microscopy (HRSEM), energy dispersive X-ray (EDX), high-resolution transmission electron microscopy (HRTEM), and particle size analysis were used to determine the nature of nanoparticles. Antioxidant, anti-fungal, and anti-leishmanial activities were evaluated. Result The techniques confirmed the formation of spherical particles of the desired range of size. Silver nanoparticles exhibited a much greater DPPH (2,2-diphenyl-1-picryl-hydrazine-hydrate) radical scavenging activity which was almost six to seven folds more than that exhibited by the AE alone. The anti-leishmanial and cytotoxic activities were evaluated on Leishmania donovani promastigote and amastigote. Conclusion The synthesized AgNPs showed remarkable DPPH radical scavenging ability owing to their antioxidant properties. The anti-leishmanial activity was exceptionally viable in both AE and AgNPs. The findings all together support the tendency of Ascophyllum nodosum to efficiently synthesized AgNPs which could be utilized for its anti-leishmanial properties. Graphical Abstract","PeriodicalId":20936,"journal":{"name":"Regenerative Engineering and Translational Medicine","volume":"29 1 1","pages":"1-15"},"PeriodicalIF":2.2000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Green Synthesis, Characterization, and Application of Ascophyllum Nodosum Silver Nanoparticles\",\"authors\":\"S. K. Mishra, Saket Sinha, Ashutosh Kumar Singh, P. Upadhyay, Diya Kalra, P. Kumar, K. Tiwari, R. Singh, R. Singh, Arvind Kumar, Alok M. Tripathi\",\"doi\":\"10.21203/rs.3.rs-944036/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose Green nanotechnology as a field has emerged and gained popularity amongst biologists due to its cost-effective and environment-friendly advancements. The most preferred is the biological method which involves plants and their extracts. Methods The silver nanoparticles were synthesized by a sunlight-driven aqueous extract (AE) of whole plant powder of Ascophyllum nodosum . Advanced techniques like high-resolution scanning electron microscopy (HRSEM), energy dispersive X-ray (EDX), high-resolution transmission electron microscopy (HRTEM), and particle size analysis were used to determine the nature of nanoparticles. Antioxidant, anti-fungal, and anti-leishmanial activities were evaluated. Result The techniques confirmed the formation of spherical particles of the desired range of size. Silver nanoparticles exhibited a much greater DPPH (2,2-diphenyl-1-picryl-hydrazine-hydrate) radical scavenging activity which was almost six to seven folds more than that exhibited by the AE alone. The anti-leishmanial and cytotoxic activities were evaluated on Leishmania donovani promastigote and amastigote. Conclusion The synthesized AgNPs showed remarkable DPPH radical scavenging ability owing to their antioxidant properties. The anti-leishmanial activity was exceptionally viable in both AE and AgNPs. The findings all together support the tendency of Ascophyllum nodosum to efficiently synthesized AgNPs which could be utilized for its anti-leishmanial properties. Graphical Abstract\",\"PeriodicalId\":20936,\"journal\":{\"name\":\"Regenerative Engineering and Translational Medicine\",\"volume\":\"29 1 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Engineering and Translational Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-944036/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Engineering and Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-944036/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Green Synthesis, Characterization, and Application of Ascophyllum Nodosum Silver Nanoparticles
Purpose Green nanotechnology as a field has emerged and gained popularity amongst biologists due to its cost-effective and environment-friendly advancements. The most preferred is the biological method which involves plants and their extracts. Methods The silver nanoparticles were synthesized by a sunlight-driven aqueous extract (AE) of whole plant powder of Ascophyllum nodosum . Advanced techniques like high-resolution scanning electron microscopy (HRSEM), energy dispersive X-ray (EDX), high-resolution transmission electron microscopy (HRTEM), and particle size analysis were used to determine the nature of nanoparticles. Antioxidant, anti-fungal, and anti-leishmanial activities were evaluated. Result The techniques confirmed the formation of spherical particles of the desired range of size. Silver nanoparticles exhibited a much greater DPPH (2,2-diphenyl-1-picryl-hydrazine-hydrate) radical scavenging activity which was almost six to seven folds more than that exhibited by the AE alone. The anti-leishmanial and cytotoxic activities were evaluated on Leishmania donovani promastigote and amastigote. Conclusion The synthesized AgNPs showed remarkable DPPH radical scavenging ability owing to their antioxidant properties. The anti-leishmanial activity was exceptionally viable in both AE and AgNPs. The findings all together support the tendency of Ascophyllum nodosum to efficiently synthesized AgNPs which could be utilized for its anti-leishmanial properties. Graphical Abstract
期刊介绍:
Regenerative Engineering is an international journal covering convergence of the disciplines of tissue engineering, advanced materials science, stem cell research, the physical sciences, and areas of developmental biology. This convergence brings exciting opportunities to translate bench-top research into bedside methods, allowing the possibility of moving beyond maintaining or repairing tissues to regenerating them. The journal encourages both top-down engineering approaches and bottom-up strategies integrating materials science with stem cell research and developmental biology. Convergence papers on instructive biomaterials, stimuli-responsive biomaterials, micro- and nano-patterning for regenerative engineering, elastomeric biomaterials, hydrogels for tissue engineering, and rapid prototyping and bioprinting approaches are particularly welcome.
The journal provides a premier, single-blind peer-reviewed forum for the publication of original papers, authoritative reviews, rapid communications, news and views, and opinion papers addressing the most important issues and efforts toward successfully regenerating complex human tissues and organs. All research articles feature a lay abstract highlighting the relevance and future impact for patients, government and other health officials, and members of the general public. Bridging the gap between the lab and the clinic, the journal also serves as a dedicated platform for showcasing translational research that brings basic scientific research and discoveries into clinical methods and therapies, contributing to the improvement of human health care.
Topics covered in Regenerative Engineering and Translational Medicine include:
Advanced materials science for regenerative and biomedical applicationsStem cells for tissue regenerationDrug delivery for tissue regenerationNanomaterials and nanobiotechnology for tissue regenerationStudies combining tissue engineering/regeneration with developmental biologyConvergence research in pre-clinical and clinical phases