Hao-Yu Tseng, Chen-Yi Lee, Y. Shih, Xi-Zhang Lin, Gwo-Bin Lee
{"title":"利用超顺磁性纳米颗粒局部加热肿瘤细胞","authors":"Hao-Yu Tseng, Chen-Yi Lee, Y. Shih, Xi-Zhang Lin, Gwo-Bin Lee","doi":"10.1109/NANO.2007.4601345","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation of hyperthermia cancer therapy utilizing high-frequency magnetic field to induce a localized temperature increase on tumors by using superparamagnetic nanoparticles. In-vitro and in-vivo experiments showed the feasibility of hyperthermia cancer therapy. The relationship between temperature rise and cell survival rate was also investigated. While CT-26 colon cancer cells were heated above 45degC, the survival rate of cancer cells would be greatly reduced. A temperature increase as high as 59.5degC can be successfully generated in rat livers. In-vivo tests also indicated that hyperthermia cancer therapy using this approach could significantly suppress the growth rate of tumors by utilizing concentrated magnetic nanoparticles and temperature-sensitive hydrogel, which was used to secure the nanoparticles in the target tumor tissue. Furthermore, a feedback temperature control system was successfully developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy is feasible. The developed technique may be promising for the hyperthermia cancer therapy.","PeriodicalId":6415,"journal":{"name":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","volume":"76 1","pages":"969-974"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Localized heating of tumor cells utilizing superparamagnetic nanoparticles\",\"authors\":\"Hao-Yu Tseng, Chen-Yi Lee, Y. Shih, Xi-Zhang Lin, Gwo-Bin Lee\",\"doi\":\"10.1109/NANO.2007.4601345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation of hyperthermia cancer therapy utilizing high-frequency magnetic field to induce a localized temperature increase on tumors by using superparamagnetic nanoparticles. In-vitro and in-vivo experiments showed the feasibility of hyperthermia cancer therapy. The relationship between temperature rise and cell survival rate was also investigated. While CT-26 colon cancer cells were heated above 45degC, the survival rate of cancer cells would be greatly reduced. A temperature increase as high as 59.5degC can be successfully generated in rat livers. In-vivo tests also indicated that hyperthermia cancer therapy using this approach could significantly suppress the growth rate of tumors by utilizing concentrated magnetic nanoparticles and temperature-sensitive hydrogel, which was used to secure the nanoparticles in the target tumor tissue. Furthermore, a feedback temperature control system was successfully developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy is feasible. The developed technique may be promising for the hyperthermia cancer therapy.\",\"PeriodicalId\":6415,\"journal\":{\"name\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"volume\":\"76 1\",\"pages\":\"969-974\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2007.4601345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th IEEE Conference on Nanotechnology (IEEE NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2007.4601345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localized heating of tumor cells utilizing superparamagnetic nanoparticles
This paper presents an investigation of hyperthermia cancer therapy utilizing high-frequency magnetic field to induce a localized temperature increase on tumors by using superparamagnetic nanoparticles. In-vitro and in-vivo experiments showed the feasibility of hyperthermia cancer therapy. The relationship between temperature rise and cell survival rate was also investigated. While CT-26 colon cancer cells were heated above 45degC, the survival rate of cancer cells would be greatly reduced. A temperature increase as high as 59.5degC can be successfully generated in rat livers. In-vivo tests also indicated that hyperthermia cancer therapy using this approach could significantly suppress the growth rate of tumors by utilizing concentrated magnetic nanoparticles and temperature-sensitive hydrogel, which was used to secure the nanoparticles in the target tumor tissue. Furthermore, a feedback temperature control system was successfully developed to keep the nanoparticles at a constant temperature to prevent overheating in the tumors such that a safer and more precise cancer therapy is feasible. The developed technique may be promising for the hyperthermia cancer therapy.