通用反应的机器学习:一种确定最大公共子结构的有效算法

Christian Tonnelier, Philippe Jauffret ∗, Thierry Hanser, Gérard Kaufmann
{"title":"通用反应的机器学习:一种确定最大公共子结构的有效算法","authors":"Christian Tonnelier,&nbsp;Philippe Jauffret ∗,&nbsp;Thierry Hanser,&nbsp;Gérard Kaufmann","doi":"10.1016/0898-5529(90)90061-C","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of automatic knowledge acquisition for computer-assisted synthesis planning, this paper presents an efficient algorithm for the identification of the maximal common substructures between reaction graphs. The terms of the problem are first completely specified. Then, the method used to solve it is presented and developed step by step. The formal algorithm is proposed as an appendix.</p></div>","PeriodicalId":101214,"journal":{"name":"Tetrahedron Computer Methodology","volume":"3 6","pages":"Pages 351-358"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0898-5529(90)90061-C","citationCount":"17","resultStr":"{\"title\":\"Machine learning of generic reactions: 3. an efficient algorithm for maximal common substructure determination\",\"authors\":\"Christian Tonnelier,&nbsp;Philippe Jauffret ∗,&nbsp;Thierry Hanser,&nbsp;Gérard Kaufmann\",\"doi\":\"10.1016/0898-5529(90)90061-C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of automatic knowledge acquisition for computer-assisted synthesis planning, this paper presents an efficient algorithm for the identification of the maximal common substructures between reaction graphs. The terms of the problem are first completely specified. Then, the method used to solve it is presented and developed step by step. The formal algorithm is proposed as an appendix.</p></div>\",\"PeriodicalId\":101214,\"journal\":{\"name\":\"Tetrahedron Computer Methodology\",\"volume\":\"3 6\",\"pages\":\"Pages 351-358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0898-5529(90)90061-C\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetrahedron Computer Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/089855299090061C\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Computer Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/089855299090061C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在计算机辅助综合规划知识自动获取的背景下,提出了一种识别反应图间最大公共子结构的有效算法。首先,问题的项是完全指定的。然后,给出了求解该问题的方法,并逐步进行了发展。形式化算法作为附录提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning of generic reactions: 3. an efficient algorithm for maximal common substructure determination

In the context of automatic knowledge acquisition for computer-assisted synthesis planning, this paper presents an efficient algorithm for the identification of the maximal common substructures between reaction graphs. The terms of the problem are first completely specified. Then, the method used to solve it is presented and developed step by step. The formal algorithm is proposed as an appendix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信