{"title":"缉获检测的双模态信息瓶颈网络。","authors":"Jiale Wang, Xinting Ge, Yunfeng Shi, Mengxue Sun, Qingtao Gong, Haipeng Wang, Wenhui Huang","doi":"10.1142/S0129065722500617","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 1","pages":"2250061"},"PeriodicalIF":6.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dual-Modal Information Bottleneck Network for Seizure Detection.\",\"authors\":\"Jiale Wang, Xinting Ge, Yunfeng Shi, Mengxue Sun, Qingtao Gong, Haipeng Wang, Wenhui Huang\",\"doi\":\"10.1142/S0129065722500617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"33 1\",\"pages\":\"2250061\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500617\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500617","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dual-Modal Information Bottleneck Network for Seizure Detection.
In recent years, deep learning has shown very competitive performance in seizure detection. However, most of the currently used methods either convert electroencephalogram (EEG) signals into spectral images and employ 2D-CNNs, or split the one-dimensional (1D) features of EEG signals into many segments and employ 1D-CNNs. Moreover, these investigations are further constrained by the absence of consideration for temporal links between time series segments or spectrogram images. Therefore, we propose a Dual-Modal Information Bottleneck (Dual-modal IB) network for EEG seizure detection. The network extracts EEG features from both time series and spectrogram dimensions, allowing information from different modalities to pass through the Dual-modal IB, requiring the model to gather and condense the most pertinent information in each modality and only share what is necessary. Specifically, we make full use of the information shared between the two modality representations to obtain key information for seizure detection and to remove irrelevant feature between the two modalities. In addition, to explore the intrinsic temporal dependencies, we further introduce a bidirectional long-short-term memory (BiLSTM) for Dual-modal IB model, which is used to model the temporal relationships between the information after each modality is extracted by convolutional neural network (CNN). For CHB-MIT dataset, the proposed framework can achieve an average segment-based sensitivity of 97.42%, specificity of 99.32%, accuracy of 98.29%, and an average event-based sensitivity of 96.02%, false detection rate (FDR) of 0.70/h. We release our code at https://github.com/LLLL1021/Dual-modal-IB.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.