{"title":"使用蒙特卡罗模拟将军事和执法培训结果转化为操作指标","authors":"Adam T. Biggs, D. A. Hirsch","doi":"10.1177/15485129211021159","DOIUrl":null,"url":null,"abstract":"There are numerous challenges comparing research initiatives due to methodological differences and scenario-specific problems. Military and law enforcement issues present an extreme variant of this challenge. Specifically, assessment and training scenarios strive for realism, but operators cannot engage one another with live rounds or induce the full spectrum of environmental stressors for obvious safety reasons. Instead, particular factors are evaluated in a given scenario via experimental statistics despite the inherent difficulty in communicating inferential statistics to the intended audience of military and law enforcement professionals. The current investigation explores how Monte Carlo simulations can use probabilistic distribution sampling to convert statistical inferences into concrete operational outcomes. Using this type of distribution sampling, statistical inferences can be translated into operational metrics such as the probability of winning a gunfight. Describing these statistical values and effect sizes in terms of survival provides a more appreciable operational metric that military and law enforcement personnel can use when evaluating the advantages of various training platforms or equipment. Several approaches are examined that each accomplish this general goal, including circumstances outside of marksmanship and lethal force decision-making.","PeriodicalId":44661,"journal":{"name":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Monte Carlo simulations to translate military and law enforcement training results to operational metrics\",\"authors\":\"Adam T. Biggs, D. A. Hirsch\",\"doi\":\"10.1177/15485129211021159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are numerous challenges comparing research initiatives due to methodological differences and scenario-specific problems. Military and law enforcement issues present an extreme variant of this challenge. Specifically, assessment and training scenarios strive for realism, but operators cannot engage one another with live rounds or induce the full spectrum of environmental stressors for obvious safety reasons. Instead, particular factors are evaluated in a given scenario via experimental statistics despite the inherent difficulty in communicating inferential statistics to the intended audience of military and law enforcement professionals. The current investigation explores how Monte Carlo simulations can use probabilistic distribution sampling to convert statistical inferences into concrete operational outcomes. Using this type of distribution sampling, statistical inferences can be translated into operational metrics such as the probability of winning a gunfight. Describing these statistical values and effect sizes in terms of survival provides a more appreciable operational metric that military and law enforcement personnel can use when evaluating the advantages of various training platforms or equipment. Several approaches are examined that each accomplish this general goal, including circumstances outside of marksmanship and lethal force decision-making.\",\"PeriodicalId\":44661,\"journal\":{\"name\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211021159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Defense Modeling and Simulation-Applications Methodology Technology-JDMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211021159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Using Monte Carlo simulations to translate military and law enforcement training results to operational metrics
There are numerous challenges comparing research initiatives due to methodological differences and scenario-specific problems. Military and law enforcement issues present an extreme variant of this challenge. Specifically, assessment and training scenarios strive for realism, but operators cannot engage one another with live rounds or induce the full spectrum of environmental stressors for obvious safety reasons. Instead, particular factors are evaluated in a given scenario via experimental statistics despite the inherent difficulty in communicating inferential statistics to the intended audience of military and law enforcement professionals. The current investigation explores how Monte Carlo simulations can use probabilistic distribution sampling to convert statistical inferences into concrete operational outcomes. Using this type of distribution sampling, statistical inferences can be translated into operational metrics such as the probability of winning a gunfight. Describing these statistical values and effect sizes in terms of survival provides a more appreciable operational metric that military and law enforcement personnel can use when evaluating the advantages of various training platforms or equipment. Several approaches are examined that each accomplish this general goal, including circumstances outside of marksmanship and lethal force decision-making.