{"title":"脉搏波分析预测毛细血管前肺动脉高压的侵袭性血流动力学。","authors":"Yen-Yu Liu, Shu-Hao Wu, Cheng-Ting Tsai, Fang-Ju Sun, Charles Jia-Yin Hou, Hung-I Yeh, Yih-Jer Wu","doi":"10.6515/ACS.202303_39(2).20220826A","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We tested the hypothesis that non-invasive pulse wave analysis (PWA)-derived systemic circulation variables can predict invasive hemodynamics of pulmonary circulation and the indicator of right heart function, N-terminal pro-brain natriuretic peptide (NT-proBNP), in patients with precapillary pulmonary hypertension (PH).</p><p><strong>Methods: </strong>This prospective study enrolled patients with group 1 and 4 PH who had complete PWA, NT-proBNP, and hemodynamics data. Risk assessment-based \"hemodynamic score (HS)\" and principal component analysis-based PWA variable grouping were determined/performed. Models of hierarchical multiple linear regression (HMLR) and receiver operating characteristic (ROC) curves were used to determine the relationships of PWA variables with HS and NT-proBNP and to predict the latter parameters.</p><p><strong>Results: </strong>Fifty-three PWAs were included. PWA variables were classified into 4 eigenvalue principal components (representing 90% configuration). Univariate analysis showed that left ventricular ejection time (LVET) was significantly negatively associated with HS and NT-proBNP levels. HMLR analysis showed that LVET was still significantly, negatively, and independently associated with HS (B = -0.006 [-0.010~-0.001]) and NT-proBNP (B = -13.47 [-21.20~-5.73]). ROC curve analysis showed that LVET > 306.9 msec and > 313.2 msec predicted the low-risk group of HS (AUC: 0.802; p = 0.001; sensitivity: 100%; and specificity: 59%) and low-to-intermediate risk levels of NT-proBNP (AUC: 0.831; p < 0.001; sensitivity: 100%; and specificity: 59%).</p><p><strong>Conclusions: </strong>The non-invasive PWA parameter, LVET, is an independent predictor of invasive right heart HS and NT-proBNP levels; it may serve as a novel biomarker of right ventricular function in patients with pre-capillary PH.</p>","PeriodicalId":6957,"journal":{"name":"Acta Cardiologica Sinica","volume":"39 2","pages":"319-330"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999185/pdf/acs-39-319.pdf","citationCount":"0","resultStr":"{\"title\":\"Pulse Wave Analysis Predicts Invasive Hemodynamics in Pre-Capillary Pulmonary Hypertension.\",\"authors\":\"Yen-Yu Liu, Shu-Hao Wu, Cheng-Ting Tsai, Fang-Ju Sun, Charles Jia-Yin Hou, Hung-I Yeh, Yih-Jer Wu\",\"doi\":\"10.6515/ACS.202303_39(2).20220826A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>We tested the hypothesis that non-invasive pulse wave analysis (PWA)-derived systemic circulation variables can predict invasive hemodynamics of pulmonary circulation and the indicator of right heart function, N-terminal pro-brain natriuretic peptide (NT-proBNP), in patients with precapillary pulmonary hypertension (PH).</p><p><strong>Methods: </strong>This prospective study enrolled patients with group 1 and 4 PH who had complete PWA, NT-proBNP, and hemodynamics data. Risk assessment-based \\\"hemodynamic score (HS)\\\" and principal component analysis-based PWA variable grouping were determined/performed. Models of hierarchical multiple linear regression (HMLR) and receiver operating characteristic (ROC) curves were used to determine the relationships of PWA variables with HS and NT-proBNP and to predict the latter parameters.</p><p><strong>Results: </strong>Fifty-three PWAs were included. PWA variables were classified into 4 eigenvalue principal components (representing 90% configuration). Univariate analysis showed that left ventricular ejection time (LVET) was significantly negatively associated with HS and NT-proBNP levels. HMLR analysis showed that LVET was still significantly, negatively, and independently associated with HS (B = -0.006 [-0.010~-0.001]) and NT-proBNP (B = -13.47 [-21.20~-5.73]). ROC curve analysis showed that LVET > 306.9 msec and > 313.2 msec predicted the low-risk group of HS (AUC: 0.802; p = 0.001; sensitivity: 100%; and specificity: 59%) and low-to-intermediate risk levels of NT-proBNP (AUC: 0.831; p < 0.001; sensitivity: 100%; and specificity: 59%).</p><p><strong>Conclusions: </strong>The non-invasive PWA parameter, LVET, is an independent predictor of invasive right heart HS and NT-proBNP levels; it may serve as a novel biomarker of right ventricular function in patients with pre-capillary PH.</p>\",\"PeriodicalId\":6957,\"journal\":{\"name\":\"Acta Cardiologica Sinica\",\"volume\":\"39 2\",\"pages\":\"319-330\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999185/pdf/acs-39-319.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cardiologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.6515/ACS.202303_39(2).20220826A\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cardiologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.6515/ACS.202303_39(2).20220826A","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Pulse Wave Analysis Predicts Invasive Hemodynamics in Pre-Capillary Pulmonary Hypertension.
Background: We tested the hypothesis that non-invasive pulse wave analysis (PWA)-derived systemic circulation variables can predict invasive hemodynamics of pulmonary circulation and the indicator of right heart function, N-terminal pro-brain natriuretic peptide (NT-proBNP), in patients with precapillary pulmonary hypertension (PH).
Methods: This prospective study enrolled patients with group 1 and 4 PH who had complete PWA, NT-proBNP, and hemodynamics data. Risk assessment-based "hemodynamic score (HS)" and principal component analysis-based PWA variable grouping were determined/performed. Models of hierarchical multiple linear regression (HMLR) and receiver operating characteristic (ROC) curves were used to determine the relationships of PWA variables with HS and NT-proBNP and to predict the latter parameters.
Results: Fifty-three PWAs were included. PWA variables were classified into 4 eigenvalue principal components (representing 90% configuration). Univariate analysis showed that left ventricular ejection time (LVET) was significantly negatively associated with HS and NT-proBNP levels. HMLR analysis showed that LVET was still significantly, negatively, and independently associated with HS (B = -0.006 [-0.010~-0.001]) and NT-proBNP (B = -13.47 [-21.20~-5.73]). ROC curve analysis showed that LVET > 306.9 msec and > 313.2 msec predicted the low-risk group of HS (AUC: 0.802; p = 0.001; sensitivity: 100%; and specificity: 59%) and low-to-intermediate risk levels of NT-proBNP (AUC: 0.831; p < 0.001; sensitivity: 100%; and specificity: 59%).
Conclusions: The non-invasive PWA parameter, LVET, is an independent predictor of invasive right heart HS and NT-proBNP levels; it may serve as a novel biomarker of right ventricular function in patients with pre-capillary PH.
期刊介绍:
Acta Cardiologica Sinica welcomes all the papers in the fields related to cardiovascular medicine including basic research, vascular biology, clinical pharmacology, clinical trial, critical care medicine, coronary artery disease, interventional cardiology, arrythmia and electrophysiology, atherosclerosis, hypertension, cardiomyopathy and heart failure, valvular and structure cardiac disease, pediatric cardiology, cardiovascular surgery, and so on. We received papers from more than 20 countries and areas of the world. Currently, 40% of the papers were submitted to Acta Cardiologica Sinica from Taiwan, 20% from China, and 20% from the other countries and areas in the world. The acceptance rate for publication was around 50% in general.