He Cuiping, Zhao Na, Hu Limei, Tianli Tang, Yufeng Yang, Nie Xiangping
{"title":"通过分析氧化应激反应、DNA甲基化相关基因表达和生命性状变化评估阿司匹林对非靶生物(大水蚤)的生态毒性作用。","authors":"He Cuiping, Zhao Na, Hu Limei, Tianli Tang, Yufeng Yang, Nie Xiangping","doi":"10.1007/s10646-023-02624-z","DOIUrl":null,"url":null,"abstract":"<p><p>Aspirin (acetylsalicylic acid, ASA), a widely used non-steroidal anti-inflammatory drug, was frequently detected in aquatic environments around the world. However, information on the potential toxic effects of aspirin on non-target aquatic invertebrates is limited. In the present study, we investigated the effects of ASA on the transcriptional expressions of antioxidant genes (Nrf2, Keap1, HO-1, GCLC, GPx, TRX, TrxR and Prx1) and DNA methylation genes (DNMT1, DNMT3 and TET2) in Daphnia magna (D. magna)for 24, 48 and 96 h and the changes of antioxidant enzymatic activity and GSH, MDA content for 48 h. The effects of ASA on the life traits of D. magna were also addressed via a 21-days chronic toxicity test. Results showed that the expressions of Nrf2 and its target genes (HO-1, GPx and TrxR, GCLC, TRX and Prx1) were induced to different degrees at 48 h and/or 96 h. The activity of antioxidant enzymes (SOD, CAT, GST and GPx) and MDA content increased but GSH content decreased, indicating that ASA caused oxidative stress in D. magna. ASA also changed the expression of DNA methylation genes, such as DNMT and TET2, in D. magna. We speculated that ASA may affect the antioxidant system responses through regulation of Nrf2/Keap1 signaling pathway, and/or through indirectly influencing DNA methylation levels by DNMT and TET gene expression, but the detailed mechanism needs further investigations. Chronic exposure to ASA for 21 days caused inhibitions on the growth, reproduction and behavior of D. magna (e.g., delaying days to the first brood and shortening the body length). In summary, ASA significantly affected the antioxidant responses of D. magna, and negatively disturbed its life traits in growth, development and reproduction.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":"32 2","pages":"137-149"},"PeriodicalIF":2.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of ecotoxicity effects of aspirin on non-target organism (Daphnia magna) via analysis of the responses of oxidative stress, DNA methylation-related genes expressions and life traits changes.\",\"authors\":\"He Cuiping, Zhao Na, Hu Limei, Tianli Tang, Yufeng Yang, Nie Xiangping\",\"doi\":\"10.1007/s10646-023-02624-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aspirin (acetylsalicylic acid, ASA), a widely used non-steroidal anti-inflammatory drug, was frequently detected in aquatic environments around the world. However, information on the potential toxic effects of aspirin on non-target aquatic invertebrates is limited. In the present study, we investigated the effects of ASA on the transcriptional expressions of antioxidant genes (Nrf2, Keap1, HO-1, GCLC, GPx, TRX, TrxR and Prx1) and DNA methylation genes (DNMT1, DNMT3 and TET2) in Daphnia magna (D. magna)for 24, 48 and 96 h and the changes of antioxidant enzymatic activity and GSH, MDA content for 48 h. The effects of ASA on the life traits of D. magna were also addressed via a 21-days chronic toxicity test. Results showed that the expressions of Nrf2 and its target genes (HO-1, GPx and TrxR, GCLC, TRX and Prx1) were induced to different degrees at 48 h and/or 96 h. The activity of antioxidant enzymes (SOD, CAT, GST and GPx) and MDA content increased but GSH content decreased, indicating that ASA caused oxidative stress in D. magna. ASA also changed the expression of DNA methylation genes, such as DNMT and TET2, in D. magna. We speculated that ASA may affect the antioxidant system responses through regulation of Nrf2/Keap1 signaling pathway, and/or through indirectly influencing DNA methylation levels by DNMT and TET gene expression, but the detailed mechanism needs further investigations. Chronic exposure to ASA for 21 days caused inhibitions on the growth, reproduction and behavior of D. magna (e.g., delaying days to the first brood and shortening the body length). In summary, ASA significantly affected the antioxidant responses of D. magna, and negatively disturbed its life traits in growth, development and reproduction.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\"32 2\",\"pages\":\"137-149\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-023-02624-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-023-02624-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessment of ecotoxicity effects of aspirin on non-target organism (Daphnia magna) via analysis of the responses of oxidative stress, DNA methylation-related genes expressions and life traits changes.
Aspirin (acetylsalicylic acid, ASA), a widely used non-steroidal anti-inflammatory drug, was frequently detected in aquatic environments around the world. However, information on the potential toxic effects of aspirin on non-target aquatic invertebrates is limited. In the present study, we investigated the effects of ASA on the transcriptional expressions of antioxidant genes (Nrf2, Keap1, HO-1, GCLC, GPx, TRX, TrxR and Prx1) and DNA methylation genes (DNMT1, DNMT3 and TET2) in Daphnia magna (D. magna)for 24, 48 and 96 h and the changes of antioxidant enzymatic activity and GSH, MDA content for 48 h. The effects of ASA on the life traits of D. magna were also addressed via a 21-days chronic toxicity test. Results showed that the expressions of Nrf2 and its target genes (HO-1, GPx and TrxR, GCLC, TRX and Prx1) were induced to different degrees at 48 h and/or 96 h. The activity of antioxidant enzymes (SOD, CAT, GST and GPx) and MDA content increased but GSH content decreased, indicating that ASA caused oxidative stress in D. magna. ASA also changed the expression of DNA methylation genes, such as DNMT and TET2, in D. magna. We speculated that ASA may affect the antioxidant system responses through regulation of Nrf2/Keap1 signaling pathway, and/or through indirectly influencing DNA methylation levels by DNMT and TET gene expression, but the detailed mechanism needs further investigations. Chronic exposure to ASA for 21 days caused inhibitions on the growth, reproduction and behavior of D. magna (e.g., delaying days to the first brood and shortening the body length). In summary, ASA significantly affected the antioxidant responses of D. magna, and negatively disturbed its life traits in growth, development and reproduction.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.