Tauseef Ahmed, Mingyu Kim, S. Khan, Joonsik Lee, Sang-bok Lee, Hyo Tae Kim, Soonil Lee
{"title":"laalo3 - basno3基微波介质的低温烧结及介电性能","authors":"Tauseef Ahmed, Mingyu Kim, S. Khan, Joonsik Lee, Sang-bok Lee, Hyo Tae Kim, Soonil Lee","doi":"10.1080/17436753.2022.2072676","DOIUrl":null,"url":null,"abstract":"ABSTRACT LaAlO3–BaSnO3 ceramics as a new microwave dielectric material were investigated in terms of optimum synthesis conditions and thereby the relative density, microstructure, solid-solution state, and dielectric properties with the addition of various sintering aids at different sintering temperatures. The dielectric properties of 0.9LaAlO3–0.1BaSnO3 (LA-0.1BS) were strongly influenced by relative density, microstructure, chemical ordering, and mixing rule of the dielectric constant. Densification of the LA-0.1BS ceramics was improved from 82.3 to 96.13% with an average grain size of around 1.9 µm at reduced sintering temperature by 250°C. The LA-0.1BS ceramics sintered with 3 mol% of Bi2O3–SiO2 (BS) showed dielectric constant (ϵr) ∼21.18 with associated dielectric loss (tan δ) ∼0.00824 and Q × f ∼1213.59 (10 GHz) which could be achieved at low sintering temperature of 1400–1450°C.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":"40 1","pages":"101 - 108"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low temperature sintering and dielectric properties of LaAlO3–BaSnO3-based microwave dielectrics\",\"authors\":\"Tauseef Ahmed, Mingyu Kim, S. Khan, Joonsik Lee, Sang-bok Lee, Hyo Tae Kim, Soonil Lee\",\"doi\":\"10.1080/17436753.2022.2072676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT LaAlO3–BaSnO3 ceramics as a new microwave dielectric material were investigated in terms of optimum synthesis conditions and thereby the relative density, microstructure, solid-solution state, and dielectric properties with the addition of various sintering aids at different sintering temperatures. The dielectric properties of 0.9LaAlO3–0.1BaSnO3 (LA-0.1BS) were strongly influenced by relative density, microstructure, chemical ordering, and mixing rule of the dielectric constant. Densification of the LA-0.1BS ceramics was improved from 82.3 to 96.13% with an average grain size of around 1.9 µm at reduced sintering temperature by 250°C. The LA-0.1BS ceramics sintered with 3 mol% of Bi2O3–SiO2 (BS) showed dielectric constant (ϵr) ∼21.18 with associated dielectric loss (tan δ) ∼0.00824 and Q × f ∼1213.59 (10 GHz) which could be achieved at low sintering temperature of 1400–1450°C.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":\"40 1\",\"pages\":\"101 - 108\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2022.2072676\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2022.2072676","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Low temperature sintering and dielectric properties of LaAlO3–BaSnO3-based microwave dielectrics
ABSTRACT LaAlO3–BaSnO3 ceramics as a new microwave dielectric material were investigated in terms of optimum synthesis conditions and thereby the relative density, microstructure, solid-solution state, and dielectric properties with the addition of various sintering aids at different sintering temperatures. The dielectric properties of 0.9LaAlO3–0.1BaSnO3 (LA-0.1BS) were strongly influenced by relative density, microstructure, chemical ordering, and mixing rule of the dielectric constant. Densification of the LA-0.1BS ceramics was improved from 82.3 to 96.13% with an average grain size of around 1.9 µm at reduced sintering temperature by 250°C. The LA-0.1BS ceramics sintered with 3 mol% of Bi2O3–SiO2 (BS) showed dielectric constant (ϵr) ∼21.18 with associated dielectric loss (tan δ) ∼0.00824 and Q × f ∼1213.59 (10 GHz) which could be achieved at low sintering temperature of 1400–1450°C.
期刊介绍:
Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.