Yu-Shu Lyu, Li-Miao Cao, Wen-Qian Huang, Jian-Xiang Liu, Hai-Ping Lu
{"title":"CRISPR/Cas9基因编辑对水稻三个多胺摄取转运蛋白基因的破坏赋予其对除草剂百草枯的耐受性","authors":"Yu-Shu Lyu, Li-Miao Cao, Wen-Qian Huang, Jian-Xiang Liu, Hai-Ping Lu","doi":"10.1007/s42994-022-00075-4","DOIUrl":null,"url":null,"abstract":"<div><p>Weeds are a major biotic constraint that can cause dramatic crop production losses. Herbicide technology has been widely used by farmers as the most cost-effective weed control measure, and development of new strategy to improve herbicide tolerance in plants is urgently needed. The CRISPR/Cas9-based genome editing tool has been used in diverse applications related to agricultural technology for crop improvement. Here we identified three polyamine uptake transporter (<i>PUT</i>) genes in rice that are homologous to the <i>Arabidopsis</i> At<i>RMV1</i>. We successfully demonstrate that CRISPR/Cas9-targeted mutagenesis of <i>OsPUT1/2/3</i> greatly improves paraquat resistance in rice without obvious yield penalty. Therefore, manipulation of these loci could be valuable for producing transgene-free rice with improved herbicide resistance in future.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-022-00075-4.pdf","citationCount":"10","resultStr":"{\"title\":\"Disruption of three polyamine uptake transporter genes in rice by CRISPR/Cas9 gene editing confers tolerance to herbicide paraquat\",\"authors\":\"Yu-Shu Lyu, Li-Miao Cao, Wen-Qian Huang, Jian-Xiang Liu, Hai-Ping Lu\",\"doi\":\"10.1007/s42994-022-00075-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Weeds are a major biotic constraint that can cause dramatic crop production losses. Herbicide technology has been widely used by farmers as the most cost-effective weed control measure, and development of new strategy to improve herbicide tolerance in plants is urgently needed. The CRISPR/Cas9-based genome editing tool has been used in diverse applications related to agricultural technology for crop improvement. Here we identified three polyamine uptake transporter (<i>PUT</i>) genes in rice that are homologous to the <i>Arabidopsis</i> At<i>RMV1</i>. We successfully demonstrate that CRISPR/Cas9-targeted mutagenesis of <i>OsPUT1/2/3</i> greatly improves paraquat resistance in rice without obvious yield penalty. Therefore, manipulation of these loci could be valuable for producing transgene-free rice with improved herbicide resistance in future.</p></div>\",\"PeriodicalId\":53135,\"journal\":{\"name\":\"aBIOTECH\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42994-022-00075-4.pdf\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"aBIOTECH\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42994-022-00075-4\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-022-00075-4","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Disruption of three polyamine uptake transporter genes in rice by CRISPR/Cas9 gene editing confers tolerance to herbicide paraquat
Weeds are a major biotic constraint that can cause dramatic crop production losses. Herbicide technology has been widely used by farmers as the most cost-effective weed control measure, and development of new strategy to improve herbicide tolerance in plants is urgently needed. The CRISPR/Cas9-based genome editing tool has been used in diverse applications related to agricultural technology for crop improvement. Here we identified three polyamine uptake transporter (PUT) genes in rice that are homologous to the Arabidopsis AtRMV1. We successfully demonstrate that CRISPR/Cas9-targeted mutagenesis of OsPUT1/2/3 greatly improves paraquat resistance in rice without obvious yield penalty. Therefore, manipulation of these loci could be valuable for producing transgene-free rice with improved herbicide resistance in future.