Zhen-Hui Lu, Ming Yang, Chen-Hui Pan, Pei-Yong Zheng, Shun-Xian Zhang
{"title":"基于多维、多层次时间数据的多模态深度学习可以增强对耐多药肺结核患者的预后预测","authors":"Zhen-Hui Lu, Ming Yang, Chen-Hui Pan, Pei-Yong Zheng, Shun-Xian Zhang","doi":"10.1016/j.soh.2022.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.</p></div>","PeriodicalId":101146,"journal":{"name":"Science in One Health","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294970432200004X/pdfft?md5=77ca8753e41e598d4df68cd3421031e9&pid=1-s2.0-S294970432200004X-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Multi-modal deep learning based on multi-dimensional and multi-level temporal data can enhance the prognostic prediction for multi-drug resistant pulmonary tuberculosis patients\",\"authors\":\"Zhen-Hui Lu, Ming Yang, Chen-Hui Pan, Pei-Yong Zheng, Shun-Xian Zhang\",\"doi\":\"10.1016/j.soh.2022.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.</p></div>\",\"PeriodicalId\":101146,\"journal\":{\"name\":\"Science in One Health\",\"volume\":\"1 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294970432200004X/pdfft?md5=77ca8753e41e598d4df68cd3421031e9&pid=1-s2.0-S294970432200004X-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science in One Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294970432200004X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in One Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294970432200004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modal deep learning based on multi-dimensional and multi-level temporal data can enhance the prognostic prediction for multi-drug resistant pulmonary tuberculosis patients
Despite the advent of new diagnostics, drugs and regimens, multi-drug resistant pulmonary tuberculosis (MDR-PTB) remains a global health threat. It has a long treatment cycle, low cure rate and heavy disease burden. Factors such as demographics, disease characteristics, lung imaging, biomarkers, therapeutic schedule and adherence to medications are associated with MDR-PTB prognosis. However, thus far, the majority of existing studies have focused on predicting treatment outcomes through static single-scale or low dimensional information. Hence, multi-modal deep learning based on dynamic data for multiple dimensions can provide a deeper understanding of personalized treatment plans to aid in the clinical management of patients.