{"title":"多巴胺受体的内吞作用:大脑中的信号传导。","authors":"Ichiro Kawahata, Kohji Fukunaga","doi":"10.1016/bs.pmbts.2022.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>This chapter describes the physiological significance of dopamine receptor endocytosis and the consequence of the receptor signaling. Endocytosis of dopamine receptors is regulated by many components such as clathrin, β-arrestin, caveolin, and Rab family proteins. The dopamine receptors escape from lysosomal digestion, and their recycling occurs rapidly, reinforcing the dopaminergic signal transduction. In addition, the pathological impact of the receptors interacting with specific proteins has been the focus of much attention. Based on this background, this chapter provides an in-depth understanding of the mechanisms of molecules interacting with dopamine receptors and discusses the potential pharmacotherapeutic targets for α-synucleinopathies and neuropsychiatric disorders.</p>","PeriodicalId":21157,"journal":{"name":"Progress in molecular biology and translational science","volume":"196 ","pages":"99-111"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endocytosis of dopamine receptor: Signaling in brain.\",\"authors\":\"Ichiro Kawahata, Kohji Fukunaga\",\"doi\":\"10.1016/bs.pmbts.2022.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This chapter describes the physiological significance of dopamine receptor endocytosis and the consequence of the receptor signaling. Endocytosis of dopamine receptors is regulated by many components such as clathrin, β-arrestin, caveolin, and Rab family proteins. The dopamine receptors escape from lysosomal digestion, and their recycling occurs rapidly, reinforcing the dopaminergic signal transduction. In addition, the pathological impact of the receptors interacting with specific proteins has been the focus of much attention. Based on this background, this chapter provides an in-depth understanding of the mechanisms of molecules interacting with dopamine receptors and discusses the potential pharmacotherapeutic targets for α-synucleinopathies and neuropsychiatric disorders.</p>\",\"PeriodicalId\":21157,\"journal\":{\"name\":\"Progress in molecular biology and translational science\",\"volume\":\"196 \",\"pages\":\"99-111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in molecular biology and translational science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.pmbts.2022.09.005\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in molecular biology and translational science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.pmbts.2022.09.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Endocytosis of dopamine receptor: Signaling in brain.
This chapter describes the physiological significance of dopamine receptor endocytosis and the consequence of the receptor signaling. Endocytosis of dopamine receptors is regulated by many components such as clathrin, β-arrestin, caveolin, and Rab family proteins. The dopamine receptors escape from lysosomal digestion, and their recycling occurs rapidly, reinforcing the dopaminergic signal transduction. In addition, the pathological impact of the receptors interacting with specific proteins has been the focus of much attention. Based on this background, this chapter provides an in-depth understanding of the mechanisms of molecules interacting with dopamine receptors and discusses the potential pharmacotherapeutic targets for α-synucleinopathies and neuropsychiatric disorders.
期刊介绍:
Progress in Molecular Biology and Translational Science (PMBTS) provides in-depth reviews on topics of exceptional scientific importance. If today you read an Article or Letter in Nature or a Research Article or Report in Science reporting findings of exceptional importance, you likely will find comprehensive coverage of that research area in a future PMBTS volume.