{"title":"列表m -玛利假设检验的最小误差概率","authors":"Ehsan Asadi Kangarshahi, A. Guillén i Fàbregas","doi":"10.1093/imaiai/iaad001","DOIUrl":null,"url":null,"abstract":"\n We study a variation of Bayesian $M$-ary hypothesis testing in which the test outputs a list of $L$ candidates out of the $M$ possible upon processing the observation. We study the minimum error probability of list hypothesis testing, where an error is defined as the event where the true hypothesis is not in the list output by the test. We derive two exact expressions of the minimum probability or error. The first is expressed as the error probability of a certain non-Bayesian binary hypothesis test and is reminiscent of the meta-converse bound by Polyanskiy, Poor and Verdú (2010). The second, is expressed as the tail probability of the likelihood ratio between the two distributions involved in the aforementioned non-Bayesian binary hypothesis test. Hypothesis testing, error probability, information theory.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum probability of error of list M-ary hypothesis testing\",\"authors\":\"Ehsan Asadi Kangarshahi, A. Guillén i Fàbregas\",\"doi\":\"10.1093/imaiai/iaad001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study a variation of Bayesian $M$-ary hypothesis testing in which the test outputs a list of $L$ candidates out of the $M$ possible upon processing the observation. We study the minimum error probability of list hypothesis testing, where an error is defined as the event where the true hypothesis is not in the list output by the test. We derive two exact expressions of the minimum probability or error. The first is expressed as the error probability of a certain non-Bayesian binary hypothesis test and is reminiscent of the meta-converse bound by Polyanskiy, Poor and Verdú (2010). The second, is expressed as the tail probability of the likelihood ratio between the two distributions involved in the aforementioned non-Bayesian binary hypothesis test. Hypothesis testing, error probability, information theory.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Minimum probability of error of list M-ary hypothesis testing
We study a variation of Bayesian $M$-ary hypothesis testing in which the test outputs a list of $L$ candidates out of the $M$ possible upon processing the observation. We study the minimum error probability of list hypothesis testing, where an error is defined as the event where the true hypothesis is not in the list output by the test. We derive two exact expressions of the minimum probability or error. The first is expressed as the error probability of a certain non-Bayesian binary hypothesis test and is reminiscent of the meta-converse bound by Polyanskiy, Poor and Verdú (2010). The second, is expressed as the tail probability of the likelihood ratio between the two distributions involved in the aforementioned non-Bayesian binary hypothesis test. Hypothesis testing, error probability, information theory.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.