Yang Li , Miaomiao Zhang , Shiyi Li , Longlong Zhang , Jisu Kim , Qiujun Qiu , Weigen Lu , Jianxin Wang
{"title":"选择性缺血-半球靶向银杏内酯B脂质体对脑缺血-再灌注损伤的溶解度和治疗效果","authors":"Yang Li , Miaomiao Zhang , Shiyi Li , Longlong Zhang , Jisu Kim , Qiujun Qiu , Weigen Lu , Jianxin Wang","doi":"10.1016/j.ajps.2023.100783","DOIUrl":null,"url":null,"abstract":"<div><p>Cerebral ischemia-reperfusion injury (CI/RI) remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies. One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier (BBB), which affects the intracerebral delivery of drugs. Ginkgolide B (GB), a major bioactive component in commercially available products of <em>Ginkgo biloba</em>, has been shown significance in CI/RI treatment by regulating inflammatory pathways, oxidative damage, and metabolic disturbance, and seems to be a candidate for stroke recovery. However, limited by its poor hydrophilicity and lipophilicity, the development of GB preparations with good solubility, stability, and the ability to cross the BBB remains a challenge. Herein, we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid (DHA) to obtain a covalent complex GB-DHA, which can not only enhance the pharmacological effect of GB, but can also be encapsulated in liposomes stably. The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion (MCAO) rats. Compared to the marketed ginkgolide injection, Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion. Low levels of reactive oxygen species (ROS) and high neuron survival <em>in vitro</em> was maintained via Lipo@GB-DHA treatment, while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype, which modulate neuroinflammatory and angiogenesis. In addition, Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway. Thus, transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"18 2","pages":"Article 100783"},"PeriodicalIF":10.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/de/main.PMC9986716.pdf","citationCount":"4","resultStr":"{\"title\":\"Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury\",\"authors\":\"Yang Li , Miaomiao Zhang , Shiyi Li , Longlong Zhang , Jisu Kim , Qiujun Qiu , Weigen Lu , Jianxin Wang\",\"doi\":\"10.1016/j.ajps.2023.100783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cerebral ischemia-reperfusion injury (CI/RI) remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies. One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier (BBB), which affects the intracerebral delivery of drugs. Ginkgolide B (GB), a major bioactive component in commercially available products of <em>Ginkgo biloba</em>, has been shown significance in CI/RI treatment by regulating inflammatory pathways, oxidative damage, and metabolic disturbance, and seems to be a candidate for stroke recovery. However, limited by its poor hydrophilicity and lipophilicity, the development of GB preparations with good solubility, stability, and the ability to cross the BBB remains a challenge. Herein, we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid (DHA) to obtain a covalent complex GB-DHA, which can not only enhance the pharmacological effect of GB, but can also be encapsulated in liposomes stably. The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion (MCAO) rats. Compared to the marketed ginkgolide injection, Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion. Low levels of reactive oxygen species (ROS) and high neuron survival <em>in vitro</em> was maintained via Lipo@GB-DHA treatment, while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype, which modulate neuroinflammatory and angiogenesis. In addition, Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway. Thus, transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.</p></div>\",\"PeriodicalId\":8539,\"journal\":{\"name\":\"Asian Journal of Pharmaceutical Sciences\",\"volume\":\"18 2\",\"pages\":\"Article 100783\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/de/main.PMC9986716.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1818087623000107\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000107","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury
Cerebral ischemia-reperfusion injury (CI/RI) remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies. One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier (BBB), which affects the intracerebral delivery of drugs. Ginkgolide B (GB), a major bioactive component in commercially available products of Ginkgo biloba, has been shown significance in CI/RI treatment by regulating inflammatory pathways, oxidative damage, and metabolic disturbance, and seems to be a candidate for stroke recovery. However, limited by its poor hydrophilicity and lipophilicity, the development of GB preparations with good solubility, stability, and the ability to cross the BBB remains a challenge. Herein, we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid (DHA) to obtain a covalent complex GB-DHA, which can not only enhance the pharmacological effect of GB, but can also be encapsulated in liposomes stably. The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion (MCAO) rats. Compared to the marketed ginkgolide injection, Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion. Low levels of reactive oxygen species (ROS) and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment, while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype, which modulate neuroinflammatory and angiogenesis. In addition, Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway. Thus, transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.