Helen Eachus , Soojin Ryu , Marysia Placzek , Jonathan Wood
{"title":"以斑马鱼为模型研究CRH轴及其与DISC1的相互作用","authors":"Helen Eachus , Soojin Ryu , Marysia Placzek , Jonathan Wood","doi":"10.1016/j.coemr.2022.100383","DOIUrl":null,"url":null,"abstract":"<div><p>Release of corticotropin-releasing hormone (CRH) from CRH neurons activates the hypothalamo–pituitary–adrenal (HPA) axis, one of the main physiological stress response systems. Complex feedback loops operate in the HPA axis and understanding the neurobiological mechanisms regulating CRH neurons is of great importance in the context of stress disorders. In this article, we review how <em>in vivo</em> studies in zebrafish have advanced knowledge of the neurobiology of CRH neurons. Disrupted-in-schizophrenia 1 (DISC1) mutant zebrafish have blunted stress responses and can be used to model human stress disorders. We propose that DISC1 influences the development and functioning of CRH neurons as a mechanism linking DISC1 to psychiatric disorders.</p></div>","PeriodicalId":52218,"journal":{"name":"Current Opinion in Endocrine and Metabolic Research","volume":"26 ","pages":"Article 100383"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823094/pdf/","citationCount":"1","resultStr":"{\"title\":\"Zebrafish as a model to investigate the CRH axis and interactions with DISC1\",\"authors\":\"Helen Eachus , Soojin Ryu , Marysia Placzek , Jonathan Wood\",\"doi\":\"10.1016/j.coemr.2022.100383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Release of corticotropin-releasing hormone (CRH) from CRH neurons activates the hypothalamo–pituitary–adrenal (HPA) axis, one of the main physiological stress response systems. Complex feedback loops operate in the HPA axis and understanding the neurobiological mechanisms regulating CRH neurons is of great importance in the context of stress disorders. In this article, we review how <em>in vivo</em> studies in zebrafish have advanced knowledge of the neurobiology of CRH neurons. Disrupted-in-schizophrenia 1 (DISC1) mutant zebrafish have blunted stress responses and can be used to model human stress disorders. We propose that DISC1 influences the development and functioning of CRH neurons as a mechanism linking DISC1 to psychiatric disorders.</p></div>\",\"PeriodicalId\":52218,\"journal\":{\"name\":\"Current Opinion in Endocrine and Metabolic Research\",\"volume\":\"26 \",\"pages\":\"Article 100383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823094/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Endocrine and Metabolic Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451965022000680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrine and Metabolic Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451965022000680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zebrafish as a model to investigate the CRH axis and interactions with DISC1
Release of corticotropin-releasing hormone (CRH) from CRH neurons activates the hypothalamo–pituitary–adrenal (HPA) axis, one of the main physiological stress response systems. Complex feedback loops operate in the HPA axis and understanding the neurobiological mechanisms regulating CRH neurons is of great importance in the context of stress disorders. In this article, we review how in vivo studies in zebrafish have advanced knowledge of the neurobiology of CRH neurons. Disrupted-in-schizophrenia 1 (DISC1) mutant zebrafish have blunted stress responses and can be used to model human stress disorders. We propose that DISC1 influences the development and functioning of CRH neurons as a mechanism linking DISC1 to psychiatric disorders.