Vijay P. Singh, Ch.B. Annapurna Devi, A. Rao, J. Joo
{"title":"Gd (III)掺杂硬石的紫外- b辐射","authors":"Vijay P. Singh, Ch.B. Annapurna Devi, A. Rao, J. Joo","doi":"10.1515/ijmr-2022-0289","DOIUrl":null,"url":null,"abstract":"Abstract Trivalent gadolinium (Gd3+)-doped calcium zinc silicate (Ca2ZnSi2O7/hardystonite) with a molar composition of Ca2−x ZnSi2O7:xGd3+ (x = 0.09 mol) was produced using a sol–gel system. The hardystonite was characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The X-ray diffraction study revealed that the prepared sample contained a tetragonal phase of Ca2ZnSi2O7. The vibrational structures of the sample were studied using Fourier transform infrared spectroscopy measurements. The photoluminescence emission spectrum of the Ca1.91ZnSi2O7:0.09Gd3+ phosphor narrow band was optimized at 312 nm in the Ultraviolet-B region under excitation at 273 nm wavelength. Electron paramagnetic resonance study authenticates the presence of gadolinium (Gd) ions within the trivalent state in the Ca1.91ZnSi2O7:0.09Gd3+ host.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"41 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultraviolet-B radiation from Gd (III) doped hardystonite\",\"authors\":\"Vijay P. Singh, Ch.B. Annapurna Devi, A. Rao, J. Joo\",\"doi\":\"10.1515/ijmr-2022-0289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Trivalent gadolinium (Gd3+)-doped calcium zinc silicate (Ca2ZnSi2O7/hardystonite) with a molar composition of Ca2−x ZnSi2O7:xGd3+ (x = 0.09 mol) was produced using a sol–gel system. The hardystonite was characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The X-ray diffraction study revealed that the prepared sample contained a tetragonal phase of Ca2ZnSi2O7. The vibrational structures of the sample were studied using Fourier transform infrared spectroscopy measurements. The photoluminescence emission spectrum of the Ca1.91ZnSi2O7:0.09Gd3+ phosphor narrow band was optimized at 312 nm in the Ultraviolet-B region under excitation at 273 nm wavelength. Electron paramagnetic resonance study authenticates the presence of gadolinium (Gd) ions within the trivalent state in the Ca1.91ZnSi2O7:0.09Gd3+ host.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2022-0289\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ijmr-2022-0289","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Ultraviolet-B radiation from Gd (III) doped hardystonite
Abstract Trivalent gadolinium (Gd3+)-doped calcium zinc silicate (Ca2ZnSi2O7/hardystonite) with a molar composition of Ca2−x ZnSi2O7:xGd3+ (x = 0.09 mol) was produced using a sol–gel system. The hardystonite was characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The X-ray diffraction study revealed that the prepared sample contained a tetragonal phase of Ca2ZnSi2O7. The vibrational structures of the sample were studied using Fourier transform infrared spectroscopy measurements. The photoluminescence emission spectrum of the Ca1.91ZnSi2O7:0.09Gd3+ phosphor narrow band was optimized at 312 nm in the Ultraviolet-B region under excitation at 273 nm wavelength. Electron paramagnetic resonance study authenticates the presence of gadolinium (Gd) ions within the trivalent state in the Ca1.91ZnSi2O7:0.09Gd3+ host.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.