Eman Mohammad Mahmoud, Musa Shongwe, Ebrahim Saeedian Moghadam, Parsa Moghimi-Rad, Raphael Stoll, Raid Abdel-Jalil
{"title":"新型肉桂碱衍生物作为微管蛋白聚合抑制剂的设计、合成和分子对接研究。","authors":"Eman Mohammad Mahmoud, Musa Shongwe, Ebrahim Saeedian Moghadam, Parsa Moghimi-Rad, Raphael Stoll, Raid Abdel-Jalil","doi":"10.1515/znc-2022-0087","DOIUrl":null,"url":null,"abstract":"<p><p>The preparation of a novel 4-methylbenzo[<i>h</i>] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[<i>h</i>]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":"78 3-4","pages":"123-131"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, and molecular docking study of novel cinnoline derivatives as potential inhibitors of tubulin polymerization.\",\"authors\":\"Eman Mohammad Mahmoud, Musa Shongwe, Ebrahim Saeedian Moghadam, Parsa Moghimi-Rad, Raphael Stoll, Raid Abdel-Jalil\",\"doi\":\"10.1515/znc-2022-0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The preparation of a novel 4-methylbenzo[<i>h</i>] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[<i>h</i>]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":\"78 3-4\",\"pages\":\"123-131\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2022-0087\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2022-0087","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis, and molecular docking study of novel cinnoline derivatives as potential inhibitors of tubulin polymerization.
The preparation of a novel 4-methylbenzo[h] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[h]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.
期刊介绍:
A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.