新型肉桂碱衍生物作为微管蛋白聚合抑制剂的设计、合成和分子对接研究。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eman Mohammad Mahmoud, Musa Shongwe, Ebrahim Saeedian Moghadam, Parsa Moghimi-Rad, Raphael Stoll, Raid Abdel-Jalil
{"title":"新型肉桂碱衍生物作为微管蛋白聚合抑制剂的设计、合成和分子对接研究。","authors":"Eman Mohammad Mahmoud,&nbsp;Musa Shongwe,&nbsp;Ebrahim Saeedian Moghadam,&nbsp;Parsa Moghimi-Rad,&nbsp;Raphael Stoll,&nbsp;Raid Abdel-Jalil","doi":"10.1515/znc-2022-0087","DOIUrl":null,"url":null,"abstract":"<p><p>The preparation of a novel 4-methylbenzo[<i>h</i>] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[<i>h</i>]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.</p>","PeriodicalId":49344,"journal":{"name":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","volume":"78 3-4","pages":"123-131"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis, and molecular docking study of novel cinnoline derivatives as potential inhibitors of tubulin polymerization.\",\"authors\":\"Eman Mohammad Mahmoud,&nbsp;Musa Shongwe,&nbsp;Ebrahim Saeedian Moghadam,&nbsp;Parsa Moghimi-Rad,&nbsp;Raphael Stoll,&nbsp;Raid Abdel-Jalil\",\"doi\":\"10.1515/znc-2022-0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The preparation of a novel 4-methylbenzo[<i>h</i>] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[<i>h</i>]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.</p>\",\"PeriodicalId\":49344,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"volume\":\"78 3-4\",\"pages\":\"123-131\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2022-0087\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/znc-2022-0087","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种新型4-甲基苯并[h]肉桂碱实体的三步合成方法。在多磷酸(PPA)的存在下,萘酰胺腙的环化直接提供了相应的目标苯并[h]喹啉。这种一锅合成包括分子内的Friedel-Crafts酰化,然后在加热条件下立即消除。值得注意的是,如果加热时间超过3小时,该步骤的产物收率会急剧下降。通过质谱鉴定了目标的新型肉桂酮衍生物,并通过光谱技术阐明了它们的结构。随后,进行分子对接,以阐明新合成的肉桂碱的推定结合模式。对接结果表明,这些衍生物是微管蛋白聚合的潜在抑制剂,当计算ki = 0.5 nM时,它们之间的相互作用达到最佳,并正确地放置在微管蛋白上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, synthesis, and molecular docking study of novel cinnoline derivatives as potential inhibitors of tubulin polymerization.

The preparation of a novel 4-methylbenzo[h] cinnolines entity via a three-step synthetic protocol is described. Cyclization of the naphthylamidrazones, in the presence of polyphosphoric acid (PPA), furnishes the respective target benzo[h]cinnolines directly. This one-pot synthesis involves intramolecular Friedel-Crafts acylation followed by instant elimination under heating conditions. It is noteworthy that the yield of the product from this step decreases dramatically if the heating is extended beyond 3 h. The target novel cinnolone derivatives were identified by mass spectrometry and their structures elucidated by spectroscopic techniques. Subsequently, molecular docking was performed to shed light on the putative binding mode of the newly synthesized cinnolines. The docking results indicate that these derivatives are potential inhibitors of tubulin polymerization and the best interaction was achieved with a computational ki = 0.5 nM and posed correctly over the lexibulin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
55
期刊介绍: A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) is an international scientific journal and a community resource for the emerging field of natural and natural-like products. The journal publishes original research on the isolation (including structure elucidation), bio-chemical synthesis and bioactivities of natural products, their biochemistry, pharmacology, biotechnology, and their biological activity and innovative developed computational methods for predicting the structure and/or function of natural products. A Journal of Biosciences: Zeitschrift für Naturforschung C (ZNC) welcomes research papers in fields on the chemistry-biology boundary which address scientific ideas and approaches to generate and understand natural compounds on a molecular level and/or use them to stimulate and manipulate biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信