与Chebyshev多项式相关的Salagean微分算子的(P, Q)模拟定义的双一价函数的系数估计

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
T. Panigrahi, S. K. Mohapatra
{"title":"与Chebyshev多项式相关的Salagean微分算子的(P, Q)模拟定义的双一价函数的系数估计","authors":"T. Panigrahi, S. K. Mohapatra","doi":"10.5614/J.MATH.FUND.SCI.2021.53.1.4","DOIUrl":null,"url":null,"abstract":"In the present investigation we use the Jackson (p,q)-differential operator to introduce the extended Salagean operator denoted by Rkp,q. Certain bi-univalent function classes based on operator Rkp,q related to the Chebyshev polynomials are introduced. First, two coefficient bounds and Fekete-Szego inequalities for the function classes are established. A number of corollaries are developed by varying parameters involved.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"9 1","pages":"49-66"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coefficient Estimates for Bi-univalent Functions Defined By (P, Q) Analogue of the Salagean Differential Operator Related to the Chebyshev Polynomials\",\"authors\":\"T. Panigrahi, S. K. Mohapatra\",\"doi\":\"10.5614/J.MATH.FUND.SCI.2021.53.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present investigation we use the Jackson (p,q)-differential operator to introduce the extended Salagean operator denoted by Rkp,q. Certain bi-univalent function classes based on operator Rkp,q related to the Chebyshev polynomials are introduced. First, two coefficient bounds and Fekete-Szego inequalities for the function classes are established. A number of corollaries are developed by varying parameters involved.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"9 1\",\"pages\":\"49-66\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/J.MATH.FUND.SCI.2021.53.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/J.MATH.FUND.SCI.2021.53.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们使用Jackson (p,q)-微分算子引入扩展的Salagean算子,用Rkp,q表示。介绍了基于算子Rkp,q的与切比雪夫多项式相关的双一元函数类。首先,建立了函数类的两个系数界和Fekete-Szego不等式。根据所涉及的不同参数,可以得出许多推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coefficient Estimates for Bi-univalent Functions Defined By (P, Q) Analogue of the Salagean Differential Operator Related to the Chebyshev Polynomials
In the present investigation we use the Jackson (p,q)-differential operator to introduce the extended Salagean operator denoted by Rkp,q. Certain bi-univalent function classes based on operator Rkp,q related to the Chebyshev polynomials are introduced. First, two coefficient bounds and Fekete-Szego inequalities for the function classes are established. A number of corollaries are developed by varying parameters involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信