L. Alamo-Nole, Adriana Ponton-Almodovar, Ivan Ortiz-Laboy
{"title":"CdSTe QDs晶体大小对CHO-K1和HEP-G2细胞活力和细胞色素P450活性的影响","authors":"L. Alamo-Nole, Adriana Ponton-Almodovar, Ivan Ortiz-Laboy","doi":"10.3390/micro3010021","DOIUrl":null,"url":null,"abstract":"In the last few years, quantum dots (QDs) have attracted research interest in different fields of science and technology. Despite their applications, it is essential to understand how nanomaterials (with different crystal sizes) are metabolized inside organisms. Thus, the focus of this study was on an evaluation of how crystal sizes of CdSTe QDs affect the viability and response of the cytochrome P450 system in CHO-K1 and HEP-G2 cells. CdSTe QDs were synthesized using a microwave-assisted system at different reaction temperatures (60, 120, 150, and 180 °C) to obtain different crystal sizes. The optical and structural characterization confirmed four crystal sizes from 3 to 8 nm. Fluorescence microscopy confirmed that CdSTe QDs are incorporated into both cell lines. Viability studies suggested that CHO-K1 cells are more sensitive than HEP-G2 cells to CdSTe QDs and Cd+2 ions. The responsible mechanisms for the toxicity of QDs and Cd+2 are apoptosis followed by necrosis. The activity of CYP 1A1, 1A2, and 3A4 isoenzymes suggests that the smallest CdSTe crystals are recognized in a manner similar to that of Cd+2. Furthermore, the largest CdSTe crystals can have different metabolic routes than Cd+2.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of CdSTe QDs’ Crystal Size on Viability and Cytochrome P450 Activity of CHO-K1 and HEP-G2 Cells\",\"authors\":\"L. Alamo-Nole, Adriana Ponton-Almodovar, Ivan Ortiz-Laboy\",\"doi\":\"10.3390/micro3010021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years, quantum dots (QDs) have attracted research interest in different fields of science and technology. Despite their applications, it is essential to understand how nanomaterials (with different crystal sizes) are metabolized inside organisms. Thus, the focus of this study was on an evaluation of how crystal sizes of CdSTe QDs affect the viability and response of the cytochrome P450 system in CHO-K1 and HEP-G2 cells. CdSTe QDs were synthesized using a microwave-assisted system at different reaction temperatures (60, 120, 150, and 180 °C) to obtain different crystal sizes. The optical and structural characterization confirmed four crystal sizes from 3 to 8 nm. Fluorescence microscopy confirmed that CdSTe QDs are incorporated into both cell lines. Viability studies suggested that CHO-K1 cells are more sensitive than HEP-G2 cells to CdSTe QDs and Cd+2 ions. The responsible mechanisms for the toxicity of QDs and Cd+2 are apoptosis followed by necrosis. The activity of CYP 1A1, 1A2, and 3A4 isoenzymes suggests that the smallest CdSTe crystals are recognized in a manner similar to that of Cd+2. Furthermore, the largest CdSTe crystals can have different metabolic routes than Cd+2.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3010021\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3010021","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of CdSTe QDs’ Crystal Size on Viability and Cytochrome P450 Activity of CHO-K1 and HEP-G2 Cells
In the last few years, quantum dots (QDs) have attracted research interest in different fields of science and technology. Despite their applications, it is essential to understand how nanomaterials (with different crystal sizes) are metabolized inside organisms. Thus, the focus of this study was on an evaluation of how crystal sizes of CdSTe QDs affect the viability and response of the cytochrome P450 system in CHO-K1 and HEP-G2 cells. CdSTe QDs were synthesized using a microwave-assisted system at different reaction temperatures (60, 120, 150, and 180 °C) to obtain different crystal sizes. The optical and structural characterization confirmed four crystal sizes from 3 to 8 nm. Fluorescence microscopy confirmed that CdSTe QDs are incorporated into both cell lines. Viability studies suggested that CHO-K1 cells are more sensitive than HEP-G2 cells to CdSTe QDs and Cd+2 ions. The responsible mechanisms for the toxicity of QDs and Cd+2 are apoptosis followed by necrosis. The activity of CYP 1A1, 1A2, and 3A4 isoenzymes suggests that the smallest CdSTe crystals are recognized in a manner similar to that of Cd+2. Furthermore, the largest CdSTe crystals can have different metabolic routes than Cd+2.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics