I G Kapitsa, L Sh Kazieva, N E Vavilov, V G Zgoda, A T Kopylov, A E Medvedev, O A Buneeva
{"title":"鱼藤酮诱导的实验性帕金森大鼠的行为反应特征及脑内isatin结合蛋白谱。","authors":"I G Kapitsa, L Sh Kazieva, N E Vavilov, V G Zgoda, A T Kopylov, A E Medvedev, O A Buneeva","doi":"10.18097/PBMC20236901046","DOIUrl":null,"url":null,"abstract":"<p><p>The neurotoxins rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (МPTP) are used for modeling Parkinson's disease in animals (PD). They induce the mitochondrial respiratory chain dysfunction, which leads to the dopaminergic (DA) neuron degeneration. The advantage of the rotenone model consists in ability of rotenone to cause neurodegeneration showing symptoms and molecular biological characteristics similar to those of PD. Isatin (indoldione-2,3) is an endogenous regulator found in tissues and biological fluids of humans and animals. It exhibits a broad range of biological activity mediated by numerous isatin-binding proteins. In this work we have investigated behavioral reactions and profiles of brain isatin-binding proteins of rats with Parkinson's syndrome (PS) in comparison with the corresponding parameters of MPTP-induced Parkinsonism in mice. Systemic injection of rotenone caused severe PS comparable with the effect of MPTP injection. It was accompanied by significant body weight loss, death, oligokinesia, muscular rigidity, and postural instability of animals. In spite of the same pathogenic basis of PS caused by rotenone and MPTP, the molecular mechanisms of their action differ. In the case of rotenone-induced PS, the pool of isatin-binding proteins common of the control rats and the rats with PS (146) significantly exceeded the pool of the common proteins of control mice and mice with PS induced by MPTP, whether right after neurotoxin injection (27), or (all the more) in a week after the MPTP injection (14). The comparison of isatin-binding proteins specific of the animals with MPTP-induced PS and with the rotenone-induced PS (as compared with the control animals) revealed total absence of proteins common of these two models of PD. It is to be noted that both neurotoxins particularly affected the proteins participating in the signal transmission and enzyme activity regulation. The changes of the profile of isatin-binding proteins in response to the injection of rotenone suggest that the neuroprotector isatin could also influence positively in the case of the rotenone model of PD.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Characteristics of behavioral reactions and the profile of brain isatin-binding proteins of rats with the rotenone-induced experimental parkinsonism].\",\"authors\":\"I G Kapitsa, L Sh Kazieva, N E Vavilov, V G Zgoda, A T Kopylov, A E Medvedev, O A Buneeva\",\"doi\":\"10.18097/PBMC20236901046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neurotoxins rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (МPTP) are used for modeling Parkinson's disease in animals (PD). They induce the mitochondrial respiratory chain dysfunction, which leads to the dopaminergic (DA) neuron degeneration. The advantage of the rotenone model consists in ability of rotenone to cause neurodegeneration showing symptoms and molecular biological characteristics similar to those of PD. Isatin (indoldione-2,3) is an endogenous regulator found in tissues and biological fluids of humans and animals. It exhibits a broad range of biological activity mediated by numerous isatin-binding proteins. In this work we have investigated behavioral reactions and profiles of brain isatin-binding proteins of rats with Parkinson's syndrome (PS) in comparison with the corresponding parameters of MPTP-induced Parkinsonism in mice. Systemic injection of rotenone caused severe PS comparable with the effect of MPTP injection. It was accompanied by significant body weight loss, death, oligokinesia, muscular rigidity, and postural instability of animals. In spite of the same pathogenic basis of PS caused by rotenone and MPTP, the molecular mechanisms of their action differ. In the case of rotenone-induced PS, the pool of isatin-binding proteins common of the control rats and the rats with PS (146) significantly exceeded the pool of the common proteins of control mice and mice with PS induced by MPTP, whether right after neurotoxin injection (27), or (all the more) in a week after the MPTP injection (14). The comparison of isatin-binding proteins specific of the animals with MPTP-induced PS and with the rotenone-induced PS (as compared with the control animals) revealed total absence of proteins common of these two models of PD. It is to be noted that both neurotoxins particularly affected the proteins participating in the signal transmission and enzyme activity regulation. The changes of the profile of isatin-binding proteins in response to the injection of rotenone suggest that the neuroprotector isatin could also influence positively in the case of the rotenone model of PD.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20236901046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20236901046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
[Characteristics of behavioral reactions and the profile of brain isatin-binding proteins of rats with the rotenone-induced experimental parkinsonism].
The neurotoxins rotenone and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (МPTP) are used for modeling Parkinson's disease in animals (PD). They induce the mitochondrial respiratory chain dysfunction, which leads to the dopaminergic (DA) neuron degeneration. The advantage of the rotenone model consists in ability of rotenone to cause neurodegeneration showing symptoms and molecular biological characteristics similar to those of PD. Isatin (indoldione-2,3) is an endogenous regulator found in tissues and biological fluids of humans and animals. It exhibits a broad range of biological activity mediated by numerous isatin-binding proteins. In this work we have investigated behavioral reactions and profiles of brain isatin-binding proteins of rats with Parkinson's syndrome (PS) in comparison with the corresponding parameters of MPTP-induced Parkinsonism in mice. Systemic injection of rotenone caused severe PS comparable with the effect of MPTP injection. It was accompanied by significant body weight loss, death, oligokinesia, muscular rigidity, and postural instability of animals. In spite of the same pathogenic basis of PS caused by rotenone and MPTP, the molecular mechanisms of their action differ. In the case of rotenone-induced PS, the pool of isatin-binding proteins common of the control rats and the rats with PS (146) significantly exceeded the pool of the common proteins of control mice and mice with PS induced by MPTP, whether right after neurotoxin injection (27), or (all the more) in a week after the MPTP injection (14). The comparison of isatin-binding proteins specific of the animals with MPTP-induced PS and with the rotenone-induced PS (as compared with the control animals) revealed total absence of proteins common of these two models of PD. It is to be noted that both neurotoxins particularly affected the proteins participating in the signal transmission and enzyme activity regulation. The changes of the profile of isatin-binding proteins in response to the injection of rotenone suggest that the neuroprotector isatin could also influence positively in the case of the rotenone model of PD.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).