基于CNN的眼底图像预测糖尿病视网膜病变状态

Md. Ahsan Habib Raj, Md. Al Mamun, Md. Farukuzzaman Faruk
{"title":"基于CNN的眼底图像预测糖尿病视网膜病变状态","authors":"Md. Ahsan Habib Raj, Md. Al Mamun, Md. Farukuzzaman Faruk","doi":"10.1109/TENSYMP50017.2020.9230974","DOIUrl":null,"url":null,"abstract":"One of the most diabetes complication is Diabetic Retinopathy (DR) that causes major loss of vision or blindness. In present day medical science, estimation of images has become key instrument for exact identification of disease. So we have designed a computational model for predicting Diabetic Retinopathy (DR) status which is based on retinal image and neural network. Our computational model has been consisting of a feature extraction phase and a classification phase. In feature extraction phase we have extracted the most appropriate features from digital fundus images by Blood Vessels and Micro aneurysms detection. For this research work we have used Diabetic Retinopathy dataset provided by Kaggle Community. Finally, we have used CNN to predict the Diabetic Retinopathy (DR). In our proposed methodology, we have achieved 95.41% accuracy.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"75 1","pages":"190-193"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"CNN Based Diabetic Retinopathy Status Prediction Using Fundus Images\",\"authors\":\"Md. Ahsan Habib Raj, Md. Al Mamun, Md. Farukuzzaman Faruk\",\"doi\":\"10.1109/TENSYMP50017.2020.9230974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most diabetes complication is Diabetic Retinopathy (DR) that causes major loss of vision or blindness. In present day medical science, estimation of images has become key instrument for exact identification of disease. So we have designed a computational model for predicting Diabetic Retinopathy (DR) status which is based on retinal image and neural network. Our computational model has been consisting of a feature extraction phase and a classification phase. In feature extraction phase we have extracted the most appropriate features from digital fundus images by Blood Vessels and Micro aneurysms detection. For this research work we have used Diabetic Retinopathy dataset provided by Kaggle Community. Finally, we have used CNN to predict the Diabetic Retinopathy (DR). In our proposed methodology, we have achieved 95.41% accuracy.\",\"PeriodicalId\":6721,\"journal\":{\"name\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"75 1\",\"pages\":\"190-193\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP50017.2020.9230974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

糖尿病最常见的并发症之一是糖尿病视网膜病变(DR),它会导致严重的视力丧失或失明。在现代医学中,图像估计已成为准确识别疾病的关键手段。为此,我们设计了一种基于视网膜图像和神经网络的糖尿病视网膜病变状态预测计算模型。我们的计算模型由特征提取阶段和分类阶段组成。在特征提取阶段,通过血管和微动脉瘤检测,从数字眼底图像中提取出最合适的特征。在这项研究工作中,我们使用了Kaggle社区提供的糖尿病视网膜病变数据集。最后,我们利用CNN预测糖尿病视网膜病变(DR)。在我们提出的方法中,我们达到了95.41%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN Based Diabetic Retinopathy Status Prediction Using Fundus Images
One of the most diabetes complication is Diabetic Retinopathy (DR) that causes major loss of vision or blindness. In present day medical science, estimation of images has become key instrument for exact identification of disease. So we have designed a computational model for predicting Diabetic Retinopathy (DR) status which is based on retinal image and neural network. Our computational model has been consisting of a feature extraction phase and a classification phase. In feature extraction phase we have extracted the most appropriate features from digital fundus images by Blood Vessels and Micro aneurysms detection. For this research work we have used Diabetic Retinopathy dataset provided by Kaggle Community. Finally, we have used CNN to predict the Diabetic Retinopathy (DR). In our proposed methodology, we have achieved 95.41% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信